沃特世与爱尔兰国家生物工艺研究培训所(NIBRT)的合作

  将使生物制药生产过程更加可控和可预测

  企业与学术界的合作将创建全球首个UPLC多聚糖数据库,可更准确方便地进行蛋白质糖基化分析。

  米尔福德, 马萨诸塞州 - 2010年5月6日沃特世(WAT:NYSE)公司和爱尔兰国家生物工艺研究和培训学院(NIBRT)今天宣布一项合作,将创建全球首个超高效液相色谱(UPLC®)多聚糖分析数据库。预计这个数据库将于2011年启用,由NIBRT开发、维持和授权,沃特世与NIBRT将共同在全球进行推广。

  生物药物的生产可能很困难,正确的糖基化对于得到正确结构的蛋白质并维持其治疗效果至关重要。蛋白质糖基化在细胞培养过程中会显著受到各种因素的影响,如溶解氧、pH、碳源和温度。这些参数在工艺中的发生任何一点变化都有可能给产品带来质量风险,因此糖基化是否一致被作为生物制药生产工艺是否进行良好控制的重要标志。

  由于蛋白质所结合的多聚糖结构复杂、数目庞大,因此生命科学实验室要想对这些结构进行鉴别和定量分析是极为困难和耗时的。

  由NIBRT Pauline Rudd教授课题组开发的新数据库,将成为首个与一系列生物治疗有关的聚糖结构的色谱保留时间数据库。其目的在于为生物制药企业提供及时和有效的方法,以确认各种糖基化蛋白质的结构。在生产工艺的各个阶段,有了更快更准确的有关糖基化信息,生物制药企业就能根据法规指南对其生产工艺进行更好的控制,以保证安全有效的生物制药制剂。

  “通过将我们在分离和多聚糖分析方面的专有技术与NIBRT在糖生物学方面的专长相结合,我们可以将快速准确的糖基化分析作为生物治疗药物的标志,”沃特世公司生物制药商业运营部总监Jeff Mazzeo博士说,“我们的目标是提供简单且更加准确的多聚糖分析方案,以便生产出优质的生物分子药物。”

  “NIBRT在糖生物学方面的专长,加上沃特世在分离科学方面的专长,将确保这次合作能开发出更快更好的技术用于糖蛋白分析,同时符合相关法规的要求。”NIBRT的CEO Maurice Treacy博士说道。

  许多基于蛋白质的生物药物是糖基化蛋白质。糖基化是一种共翻译和翻译后修饰的形式,将多聚糖与蛋白质、脂类和有机分子结合。多聚糖直接影响糖蛋白生物药物的有效性和安全性。

  最近色谱技术上的新进展提供了更高的分离度、灵敏度和分析速度,为蛋白质糖基化的定性和定量分析提供了更高的可靠性。UPLC经众多用户的实践检验被证明是理想的选择,可用于分析生物分子及其结合的多聚糖结构,并确定每种多聚糖结构的相对比例。

  沃特世UPLC多聚糖分析方案由ACQUITY UPLC BEH多聚糖分析专用色谱柱配合带荧光检测器的ACQUITY UPLC®系统组成,用于分析2-氨基苯甲酰胺(2-AB)或其它荧光试剂标记的生物药物经酶处理后得到的多聚糖混合物。UPLC多聚糖分析方案提供比HPLC方案更好的分析结果,具有重现性好、分离度高、灵敏度高且分析速度快的特点。

  一旦NIBRT数据库开始投入使用,将沃特世UPLC多聚糖分析方案结合此数据库可以非常容易的根据每个UPLC色谱峰的保留时间来确定多聚糖结构,无论是复杂多聚糖,高甘露糖,中性和唾液酸化多聚糖均可,以便确认样品中存在的已知结构或测定Glu值并确定未知或未预料到的多聚糖。

  在一份讨论UPLC Glycan分析解决方案的应用报告中,沃特世详细描述了UPLC用于多聚糖分析的方法。


  关于NIBRT(www.nibrt.ie)

  NIBRT——爱尔兰国家生物工艺研究培训所是一家优秀的机构,它为特定目的创建了灵活的现代生物工艺设备,有助于爱尔兰生物制药行业的扩大,以这些设备为生物制造提供研究平台解决方案,为学生提供量身定制的认证产业培训和学术教育计划,来支持生物制药行业。更多信息请参阅www.nibrt.ie

 

  关于沃特世公司(www.waters.com)

  50年来,沃特世公司(NYSE:WAT)通过提供实用且可持续的创新,实现了全球医疗保健、环境管控、食品安全、水质监测等领域的显著进步,为基于实验室的许多机构创造了商业价值。

  沃特世的技术突破和实验室解决方案开创了分离科学、实验室信息管理、质谱技术和热分析的相互组合,为客户提供了一个持久成功的平台。

  沃特世公司2009年的总收入达15亿美元拥有5,200名员工;公司正在帮助全球客户推进科研进程,并为其提供绝佳的操作体验。

相关文章

《科学》:人工智能几秒便可设计“原创”新蛋白质

今年6月,韩国监管机构批准了首款由人类设计的新型蛋白质制成的新冠肺炎疫苗。该疫苗基于一种球形蛋白质“纳米颗粒”,由研究人员在10年前通过劳动密集型试错攻关研制而成。现在,随着人工智能(AI)的巨大进步......

华东理工大学蛋白靶向降解策略研究获进展

近日,中国工程院院士、华东师范大学教授钱旭红和副教授杨泱泱课题组在蛋白靶向降解策略研究中取得重要进展,相关成果以《自噬途径依赖的具有内质网靶向能力的DNA纳米材料用于降解膜结合细胞器内的蛋白质》为题发......

1953年首度预测:“β波纹片”蛋白质结构获证实

1953年,科学家首次预测了一种名为“β波纹片”的蛋白质结构。约70年后,美国研究人员首次在实验室中创建出了这一结构,并使用X射线结晶学对其进行了详细表征。这项新研究有望使科学家们设计并制造出基于波纹......

《科学》一项新研究为男性不育提供希望

我国近20年不孕不育率从6.9%增长到17.1%,其中男性病因约占40%。遗传突变和基因表达异常是男性不育的重要病因。然而,精子形成过程中仍有许多谜题尚未破解。中国科学院分子细胞科学卓越创新中心(生物......

新型扩张显微技术让隐藏分子“现形”

在活细胞内,蛋白质和其他分子通常紧密地堆积在一起。这些密集的簇很难成像,因为无法将荧光标记嵌在分子之间而使它们可见。据29日发表在《自然·生物医学工程》杂志上的论文,美国麻省理工学院研究人员开发出一种......

资深药企人DerekLowe抨击AlphaFold:靠结构预测做药纯属自嗨

DeepMind近日公布了AlphaFold的最新进展:已预测出超过100万个物种的2.14亿个蛋白质结构,几乎涵盖了地球上所有已知蛋白质,再次刷新了我们对它的期待。AlphaFold2横空出世时的热......

科学家揭开生长素“搬运工”的蛋白结构面纱

向日葵为什么总是向着太阳?在植物体内有一种称为生长素的物质,如同人体内生长激素一样,它负责给细胞传达信息,指挥植物的生长发育。受光照影响,生长素会从向日葵茎端向光侧运输到背光侧,产生浓度差异。由此,背......

《PNAS》:蛋白α1抗胰蛋白酶(AAT)的表达和成熟图谱

马萨诸塞大学阿默斯特分校(UniversityofMassachusettsAmherst)和马萨诸塞大学陈医学院(UMassChanMedicalSchool)的研究人员最近宣布,他们以前所未有的清......

谷歌DeepMind:已发现科学界几乎所有已知的蛋白质结构

“从今天起,预测几乎所有已知蛋白质的结构,都如同使用搜索引擎一样简单。”7月28日,DeepMind公司与欧洲生物信息研究所(EMBL-EBI)的合作团队公布了生物学领域的一项重大飞跃。他们利用人工智......

抗断裂且可拉伸仿生蛋白质创造二维分层复合材料

科技日报北京7月25日电(实习记者张佳欣)据最新一期《美国国家科学院院刊》报道,美国宾夕法尼亚州立大学研究人员利用鱿鱼环齿上的仿生蛋白质创造了一种复合的层状二维材料,这种材料具有抗断裂和很强的弹性。&......