发布时间:2012-12-31 11:07 原文链接: 激光操纵磁悬浮石墨烯首次实现

  据物理学家组织网12月27日报道,最近,日本青山学院大学在一项研究中,首次实现了用激光操纵磁悬浮石墨烯运动,通过改变石墨烯的温度,能改变它的悬浮高度,控制运动方向并让它旋转,而且演示了阳光也能让石墨烯旋转。这一成果对研究光驱动人类运输工具有重要意义,并有望带来一种新型光能转换系统。相关论文发表在最近出版的《美国化学协会期刊》上。

  磁悬浮已证明对从火车到青蛙各种物体都有效,但至今还没有一款磁悬浮的制动器,将外部能量转化为动能。研究人员解释说,产生磁悬浮是由于物体具有反磁性,会排斥磁场。所有物质都有不同程度的反磁性,通常情况下反磁性很弱,无法让物体浮起来。只有当物体反磁性的强度超过其顺磁性(被磁场吸引),合磁力为斥力且斥力大于重力时,才可能浮起。而石墨烯就是反磁性最强的材料之一。

  反磁物体的悬浮高度取决于外加磁场和材料本身的反磁性,悬浮位置则可通过改变外加磁场来事先控制。迄今为止,用外部刺激如温度、光、声音等因素改变材料反磁性,从而控制磁悬浮物体的运动,还没人能做到。

  “该研究最重要的一点是实现了实时运动控制技术,首次无需接触而推动一个悬浮着的反磁物体。”论文合著者、青山学院大学教授安倍次郎(音译)介绍说,“由于该技术简单而且基本,预计它能用于日常生活的许多领域,比如运输系统、娱乐活动、光照制动器以及光能转换系统等。”

  实验中,研究人员演示了用激光控制温度,使一小片磁盘状的石墨烯悬浮在一块钕铁硼(NdFeB)永磁铁的上方。石墨烯的悬空高度会随着温度升高而下降,反之亦然。研究人员解释说,改变温度会改变石墨烯的磁化率,或它被外加磁场磁化的程度。在原子尺度,是激光的光热效应增加了石墨烯中热激电子的数量,热激电子越多,石墨烯的反磁性就越弱,从而悬浮的高度就越低。

  把激光瞄准石墨烯盘片中心可以控制高度,瞄准边缘能让它运动和旋转。因为改变温度分布会改变磁化率分布,使石墨烯在磁场中受到的斥力不均衡,从而沿着与光束运动相同的方向运动。他们设计的旋转装置放在阳光下也会旋转,转速超过200转/分钟。这对开发光驱动涡轮非常有用。

  研究人员预测,放大这种激光控制磁悬浮运动的能力,有望推动磁悬浮制动器、光热太阳能转换系统的发展,还可用于低成本的环保发电系统、新型光驱运输系统等领域。

  安倍说:“目前,我们正计划开发一种适合该系统的磁悬浮涡轮叶片。其中可能会有摩擦力破坏旋转,因此我们想用一种与MEMS(微机电系统)有关的技术,开发出高效的光能转换系统。在制动器方面,磁悬浮石墨烯能运输近乎它本身重量的任何物体。如果能成功放大这一系统的话,用来开发个人交通工具就不是梦。”

相关文章

科学家直接证实锯齿型石墨烯纳米带本征磁性

中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......

创新激光技术首次捕获非磁性金属的磁信号

铜、金、铝等常见非磁性金属内部微弱的磁信号,百年来始终未能被科学仪器破译。发表于最新一期《自然·通讯》杂志的一项最新研究称,来自以色列希伯来大学、美国宾夕法尼亚州立大学和英国曼彻斯特大学的研究团队,借......

哈工大科研团队在《自然》发表研究成果推动“自由定制”激光技术发展

近日,哈尔滨工业大学深圳校区宋清海、肖淑敏教授团队在激光技术领域取得重要突破。团队成功攻克了传统激光模斑形状、偏振、角动量受限的技术瓶颈,创新性开发出可自由调控发射波前的新型激光光源。研究成果发表在《......

石墨烯量子点制备研究获进展

富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......

石墨烯量子点制备研究获进展

富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......

石墨烯合成迎新进展

近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......

学者开发出分离性能可切换的石墨烯智能分离膜

智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......

石墨烯中首次演示量子自旋霍尔效应

荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......

首个速度达拍赫兹光电晶体管问世

在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......

科研人员研发出高各向异性导热石墨烯复合材料实现光电热协同控冰

中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......