
①王加宁正对土样石油旋蒸处理

②王加宁(中)同爱尔兰专家在东营孤岛针对石油污染土壤,进行污染环境下优良生物菌剂及修复技术的探讨

③王加宁(右四)在东营孤岛同当地的工作人员一起进行试验场地调研及规划

④王加宁(右)和工作人员在油井周围进行石油污染土样的采集工作
被称为“工业血液”的石油是人类最重要的能源之一,但随着越来越多油气井的出现,土壤石油污染问题日益突出,这颗“化学定时炸弹”已经成为不容忽视的环境问题。
而山东省科学院生态研究所研究员、副所长王加宁带领的“污染控制与环境修复”团队另辟蹊径,找到了拆掉这枚炸弹的“秘密武器”:爱吃石油的微生物。
世界难题
据了解,我国大庆、胜利、辽河和中原等油田数万口油井附近100~200平方米的范围内都看不到草木生长的痕迹。
“土壤被原油污染后就成了不毛之地,每开采40亿吨原油,就有7%的原油流入周围环境。”王加宁说。
而石油污染土壤修复既是油田环境保护的世界性瓶颈难题,也是衡量国家污染土壤治理技术水平的标志。
目前,石油土壤污染修复方法主要有3种:化学方法、物理方法和生物方法,通过物理方法或者化学方法处理后,土壤中微生物的生态受到严重破坏,土壤变成废渣,难以根本解决问题。而利用微生物分解石油,不仅能修复污染,还能让土壤更加肥沃。
生物修复作为土壤污染治理的主流技术,已经得到广泛应用,但受限于石油类污染物的降解难度,一直还未形成工程化和实用化的石油污染土壤生物修复技术。
王加宁团队从十几年前就开始承担国家“863”石油污染土壤生物修复课题。“难度在于石油成分很复杂,包括烷烃类的、芳香烃类的、石油里面的胶质和沥青质。因为石油成分复杂,受污染土壤中可能存在几百上千种化合物,一种方案很难修复。”他说。
因此,该项目技术攻关的难点之一就是不断筛选,找到效果最好的菌群。“要筛出来一个菌剂最好的配方,可能得几百上千次实验。”王加宁说。
拆掉“炸弹”
2013年山东省科学院聘请了中科院沈阳应用生态研究所郭书海研究员作为学术带头人,成立了“污染控制与环境修复”创新团队。数年来,他们经历了不断重复的实验,针对烷烃、芳烃和胶质等石油组分的降解过程、强化机制及材料设备,开展了修复原理、工艺方法和技术工程化三方面的全链条创新,以电动协同、微生物包埋、生物增溶为增强手段,创建了石油污染土壤生物强化修复工程技术体系。“石油污染土壤生物修复工程技术体系构建及应用”成果荣获2017年度山东省科学技术进步一等奖。
实际上,这些微生物就“生活”在油田附近。“油田周围被污染的油泥地里生长着不少微生物。其中有一些依靠石油中的碳源生长,我们先挑选出‘饭量’大的,然后进一步筛选论证,将它们制成菌剂。”王加宁说。
从上万种菌群中发现适合细菌之后,研究人员还要找到最适合培养菌群的环境,然后投入模拟应用,再次不断实验。
最终,该团队在石油污染土壤、采油产生的油泥砂、多环芳烃及农药污染场地及农业面源污染等领域的修复技术上取得了较大突破,在石油污染土壤修复技术方面,开发了耐盐、耐低温、耐高油污修复菌剂2个,结合生物强化、生物刺激、土壤改良等技术,在胜利油田建立了石油污染修复前、修复中和修复后的技术应用规范,填补了我国利用微生物—植物联合修复石油污染土壤的空白。
落地生根
目前,该成果在胜利油田、辽河油田和吉林油田进行工程应用,累计处理石油污染土壤12万吨,消减了生态脆弱区环境风险,取得经济效益1.43亿元,解决了长期困扰我国油田区石油污染土壤修复的工程技术难题,主要成果入选《2016年国家重点环境保护实用技术》。
例如,胜利油田金岛实业有限责任公司利用该项目研发的生物及强化修复技术,自 2014 年1月至2016年11月针对胜利油田孤岛采油厂、桩西采油厂、河口采油厂等多个采油厂周边的石油污染土壤和采油过程中产生的10.4万吨含油污泥进行了修复工程应用。经过12 个月的修复周期后,土壤中石油污染物浓度降低73%,修复后的土壤达到了农田的使用标准。
现在,在胜利油田附近的实验田,油污地开始有了生机,实验棚里的植物已经生长得郁郁葱葱。
“新旧动能转换每个产业都离不开环保,之所以叫旧动能,就是因为能耗高、效率低、污染重,从这个角度理解,动能转换的最终问题还是环保问题,新旧动能转换名单里的十大产业没有把环保单独拿出来作为一个产业,但每个产业都必须把环保、生态放在首位,而对关停企业的治理就更离不开环保技术了。”王加宁说。
此外,团队先后与乌克兰、俄罗斯、美国、澳大利亚、爱尔兰、西班牙等相关大学、科研院所及企业建立了国际合作关系,在环保、高效石油吸附材料的研制及关键技术引进及应用领域,开展联合研究,积极引进国外先进技术与产品,推动了我国石油污染控制及修复领域技术进步。
在显微镜下的微观世界里,那些我们肉眼看不到的小生命,每天都上演着惊心动魄的“饥饿游戏”。最近,美国亚利桑那州立大学、瑞士苏黎世联邦理工学院以及瑞士联邦水科学与技术研究所组成的国际科研团队,发现了一种令......
在微观世界里,微生物会争夺地盘、向敌人喷射化学物质,有时还会利用微观地形来获得优势。一项研究发现,细菌可以利用邻近酵母细胞形成的液体小囊加速移动。这些微观的水分痕迹使细菌能够游得更远、传播得更快,揭示......
研究人员发现,即使使用60℃高温水洗程序清洗衣物,洗衣机仍无法清除潜在有害细菌,这一发现可能与抗生素耐药性上升有关。近日,PLoSOne发表的一项研究表明,受污染的织物可能成为持续数周的感染源,但研究......
水稻白叶枯病、番茄青枯病、猕猴桃溃疡病……这些细菌性病害会引发作物叶斑、枯萎、腐烂,严重时可造成作物绝收。然而,传统抗细菌农药不仅种类匮乏,而且大多采用铜制剂和抗生素等方式“无差别杀菌”,对环境并不友......
3月10日,记者从国家能源局官网获悉,为进一步完善我国石油天然气产供储销体系,提升行业高质量发展水平,国家能源局近日发布《石油天然气基础设施规划建设与运营管理办法》(征求意见稿)(简称《办法》)。这是......
近日,东北农业大学单安山教授团队成功构建了兼具抗菌活性和细胞穿透活性的“双功能”自组装纳米抗菌肽用于对抗细胞内细菌,相关成果发表在《先进科学》上。“双功能”自组装纳米抗菌肽的性能。东北农业大学供图随着......
在人类肉眼难以察觉的微观世界中,微生物无处不在,它们之间的博弈与互动构成了复杂的生态系统网络。铁是微生物维持生存的必需元素,也是微生物之间的博弈互动所争夺的核心稀缺资源。然而,微生物在铁元素博弈中遵循......
近日,包括天津大学生物安全战略研究中心主任、北洋讲席教授张卫文在内的一个由国际顶尖合成生物学家组成的国际专家团队在《科学》发文,呼吁谨慎并采取集体行动来解决镜像细菌发展带来的潜在风险。据介绍,“镜像细......
想象一下,有一款新型疫苗,接种时不需要用针扎进肌肉注射,只需在皮肤上涂抹一种乳膏,使用起来毫无痛感,不会引起发热、肿胀、发红或手臂疼痛。人们无需排队等待接种,而且其价格低廉。据最新一期《自然》杂志报道......
科学家担心,人造细菌会从培养皿中“逃脱”,从而引发一场全球瘟疫,届时地球上的生命将无法抵御。近日,38位科学家在《科学》发文呼吁,世界各国政府应该停止资助并禁止有关“镜像细菌”的研究,因为这种细菌的化......