碳基纳米材料在生物医学、食品、化妆品、催化等领域表现出巨大的应用前景,特别是石墨烯材料,引起了人们的密切关注。石墨烯是一种具有二维蜂窝状结构的新型纳米材料,它具有优异的力学、热学、电学和光学性能,在生物医药、生物传感器及电化学等方面具有潜在的应用,尤其是在药物传递方面,由于石墨烯具有较大的比表面积,可以通过上下表面及其边缘负载药物,其负载能力远胜于其它纳米材料。当石墨烯氧化成氧化石墨烯(GO)后,增加了羧基、羟基及环氧基团等结构,提高了氧化石墨烯在水中的分散性和易于功能化的优势,使氧化石墨烯更易于修饰靶向分子并增加了其在人体血液中的流动性,从而实现更高效更安全和靶向的药物递呈。生物安全性是决定石墨烯能否真正走向应用的必备条件,但是已有的毒性实验研究仍无法就石墨烯潜在毒性问题给出明确的回答。
近日,中国科学院理化技术研究所微纳材料与技术研究中心研究人员在石墨烯生物应用研究的基础上,首次以哺乳期仔鼠为模型,系统研究了GO经口服暴露后对哺乳期仔鼠生长发育的影响。之所以选择哺乳期仔鼠作为模型,是因为纳米材料的生殖发育毒性越来越受到人们的重视,哺乳期母婴尤其是新生儿由于其特殊的生理阶段特性,其肝脏功能、肾脏功能不完善,抵抗力差,对药物的代谢和清除能力远低于成年人,容易产生药物毒性。因此,研究氧化石墨烯对哺乳期仔鼠发育的影响对于揭示石墨烯的潜在毒性具有重要的意义。实验结果表明,经自由饮水21天后,高剂量组(0.8 mg/d)仔鼠的体重、体长以及尾长等发育指标显著低于对照组。组织形态学进一步证实了高剂量组GO会引起仔鼠的生长发育迟缓。研究人员认为,GO引起仔鼠生长发育迟缓的原因可能是哺乳期间仔鼠在长期接触GO后导致小肠肠绒毛发育抑制、变短,从而阻碍了仔鼠对营养物质的吸收,导致仔鼠发育迟缓。文章为揭示石墨烯与生物体之间的相互作用关系提供了重要的依据,为氧化石墨烯进一步的生物应用研究奠定了毒理学基础。相关研究成果发表在新一期的《生物材料》(Biomaterials)上(2015, 40, 23-31)。
该研究获得国家科技部“863”项目和国家自然科学基金项目的大力支持。
哺乳期仔鼠口服饮用高剂量的氧化石墨烯21天后引起仔鼠生长发育迟缓
近日,国际电工委员会纳米电工产品与系统技术委员会(IEC/TC113)正式发布国际标准IECTS62607-6-23:2025Nanomanufacturing-Keycontrolcharacter......
中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......
智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......
荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......
在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......
中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......
广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......