发布时间:2022-04-24 00:07 原文链接: 石墨烯修复告别“大水漫灌”开启“精准滴灌”

image.png

 石墨烯薄膜缺陷的快速修复过程示意图。(赵文杰提供)

近期,中国科学院宁波材料技术与工程研究所海洋实验室苛刻环境材料耦合损伤与延寿团队,设计了一种快速、精准修复石墨烯薄膜缺陷的方法,可以在15分钟内高效地修复石墨烯薄膜上多尺度和多类型缺陷,在提高石墨烯薄膜腐蚀防护性能的同时不影响石墨烯优异的导电性能。

该研究工作以《以精确快速的自组装缺陷修复方法消除石墨烯涂层的电偶腐蚀效应》为题正式发表在材料领域高水平期刊《先进功能材料》(Advanced Functional Materials)。

“天生”缺陷期待精准修复

自问世以来,石墨烯以其优异的化学稳定性和不透过性,被认为是最具潜力且已知最薄的防腐材料。化学气相沉积法(CVD)则常用来制备大面积和高品质的石墨烯薄膜,但CVD法生长石墨烯的过程中,不可避免地会引入不同类型和不同尺寸的本征缺陷,例如空位、针孔、裂纹和石墨烯岛晶界等。

缺陷的存在,导致金属基体直接暴露在腐蚀介质中,引发金属基体和石墨烯之间的电偶腐蚀,加速了金属基体的腐蚀速度。这些缺陷除了会降低石墨烯薄膜的防腐性能外,还会降低电学性能,尤其是在腐蚀发生以后。

已有的一些修复石墨烯缺陷的方法,比如通过原子层沉积(ALD)方法在石墨烯上沉积钝化氧化锌、氧化铝等氧化物。氧化物覆盖整个石墨烯表面,可以提升石墨烯膜层的耐腐蚀性能。

但是,ALD方法耗时数小时,并且对缺陷缺少高选择性,沉积在石墨烯的无缺陷区域的氧化物往往会大幅降低石墨烯的电性能。

创新方法,揭示机制

上述文章通讯作者、宁波材料所研究员赵文杰告诉《中国科学报》,修复石墨烯缺陷的最大挑战是高效性和精准性,同时又不影响其化学稳定性和电学性能。

研究团队基于溶液蒸发过程中1H,1H,2H,2H-全氟辛硫醇(PFOT)分子在石墨烯缺陷位置的原位自组装,通过硫醇与缺陷位点暴露的铜基底形成化学键快速修复缺陷。采用原子力显微镜和拉曼光谱联用技术验证了PFOT修复石墨烯缺陷的精准度,发现PFOT选择性吸附在不同类型和尺寸的石墨烯缺陷上,在石墨烯完整区域没有出现PFOT分子。

他们通过显微红外、XPS和DFT计算揭示了化学键的形成机制,实验表征和DFT计算得出的结果具有非常好的一致性。PFOT分子与暴露在缺陷位置的基底铜原子和石墨烯缺陷边缘的碳原子形成非常强的共价键,并且,PFOT分子与完整无缺陷的石墨烯表面形成弱的范德华键,很容易去除,这就是PFOT精准修复石墨烯缺陷的原因。

此外,硫醇与基底铜原子和缺陷边缘碳原子之间的化学键导致PFOT分子扩散到缺陷位置的Ehrlich-Schwoebel势垒降低。这就使得PFOT分子可以很快(仅在15分钟内)且精准的修复石墨烯缺陷。

普适性修复法或影响工业领域

赵文杰表示,该石墨烯耐蚀薄膜缺陷精准修复的方法展现出普适性,具备三个关键要素:

修复物质须与金属基底有牢固的化学键合,确保长期的化学稳定性,使修复具有长效性;修复物质不会与无缺陷的石墨烯形成化学键,确保修复过程不影响石墨烯的电学性能;修复物质含有疏水性官能团,降低腐蚀性介质在表面的润湿性,从而提升石墨烯膜层的防腐蚀性能。

因此,如果说以往的修复方式是“大水漫灌”式,本成果实现的则是“精准滴灌”式定点修复。

对此成果,《先进功能材料》审稿人认为,作者通过系统的实验表征和第一性原理计算,修复了石墨烯薄膜表面存在的多尺度、多类型的缺陷,消除了石墨烯与铜基底之间潜在的电偶腐蚀,并深刻揭示了修复机制,该修复方法可以应用于其他修复过程,这项工作将激发电子工业、涂层和传感器领域对石墨烯薄膜修复的广泛研究。

相关论文信息:https://doi.org/10.1002/adfm.202110264

 


相关文章

上海微系统所牵头制定的《石墨烯薄膜的载流子迁移率和方块电阻测量:霍尔棒法》国际标准发布

近日,国际电工委员会纳米电工产品与系统技术委员会(IEC/TC113)正式发布国际标准IECTS62607-6-23:2025Nanomanufacturing-Keycontrolcharacter......

科学家直接证实锯齿型石墨烯纳米带本征磁性

中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......

石墨烯量子点制备研究获进展

富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......

石墨烯量子点制备研究获进展

富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......

石墨烯合成迎新进展

近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......

学者开发出分离性能可切换的石墨烯智能分离膜

智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......

石墨烯中首次演示量子自旋霍尔效应

荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......

首个速度达拍赫兹光电晶体管问世

在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......

科研人员研发出高各向异性导热石墨烯复合材料实现光电热协同控冰

中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......

石墨烯环境毒性机制研究获重要进展

广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......