众所周知,石墨烯是一种零带隙的二维原子晶体材料,为了适应其快速应用,人们发展了一系列方法来打开石墨烯的带隙,例如:打孔,用硼或氮掺杂和化学修饰等,这样就会给石墨烯引入缺陷,从而对其电学性能和器件性能有很大的影响。拉曼光谱在表征石墨烯材料的缺陷方面具有独特的优势,带有缺陷的石墨烯在1350cm-1附近会有拉曼D峰,一般用D峰与G峰的强度比(ID/IG)以及G峰的半峰宽(FWHM)来表征石墨烯中的缺陷密度 [4, 5]。图4 [4]揭示了ID/IG随着37Cl+辐照能量增加的变化曲线图及对应的辐照能量的HRTEM图。ID/IG的最大值出现在37Cl+辐照能量约为1014 ions/cm2处。研究表明,缺陷密度正比于ID/IG,因此此时的缺陷是最多的。进一步增加辐照能量(1016inos/cm2),样品已经完全非晶化了(HRTEM)。拉曼光谱依然有效,这是因为样品仍保留了sp2结构的相。此外,含有缺陷的石墨烯还会出现位于1620cm-1附近的D’峰。ID/ID,与石墨烯表面缺陷的类型密切相关 [5]。综上所述,拉曼光谱是一种判断石墨烯缺陷类型和缺陷密度的非常有效的手段。
图4 ID/IG随着37Cl+辐照能量增加的变化曲线图及对应的辐照能量的HRTEM图[4]
近日,国际电工委员会纳米电工产品与系统技术委员会(IEC/TC113)正式发布国际标准IECTS62607-6-23:2025Nanomanufacturing-Keycontrolcharacter......
中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......
智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......
荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......
在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......
中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......
广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......