石墨烯被研究者和各大媒体誉为“新材料之王”,是人类已知强度高、韧性好、重量轻、透光率高、导电性佳的新型纳米材料,但石墨烯电池为什么没有取代锂电池成为电动车的电池?
集万千光芒于一身的石墨烯聚合电池,有着比能量高、充电速率快等优点,正好是当今电动汽车的痛点所在。比如早在2015年,华为瓦特实验室在日本第56届日本电池大会上发布的一项快充技术,这款3000mAh的石墨烯电池仅需5分钟,就可获得高达48%的电量。
更有甚者,早在2014年,西班牙Graphenano公司就与西班牙科尔瓦多大学,合作研究出了首例石墨烯聚合材料电池。
按他们的说法,这款电池有着诸多优点:
1、一个石墨烯电池的比能量超过600wh/kg,储电量是当时市场最好产品的三倍,这个表现放在当今都能呈碾压态势(比如目前比亚迪磷酸铁锂电池的单体能量密度为150~160Wh/kg、特斯拉最新的21700电池系统的能量密度在300Wh/kg左右);
2、单次续航里程可高达1000公里;
3、单次完全充电仅需8分钟以内;
4、使用寿命是传统氢化电池的四倍,锂电池的两倍;
5、重量仅为传统电池的一半;
6、Graphenano表示,此款电池的成本比锂电池低77%。

如果从实验室角度看,这些数据我并不十分怀疑,因为石墨烯电池又被称为“圈钱利器”或“论文利器”。不信去大学看看就知道了,研究这东西很好发文章,但真到实用阶段,基本都哑火了。
事实上就目前石墨烯在电池上的应用来说,主要是和硅结合,所谓的石墨烯电池,本质上还是属于锂电池。
那么石墨烯可以在锂电中充当什么角色呢?对其研究的有正极活性材料,负极活性材料,以及导电剂。如果石墨烯充当正极,电压要比三元、铁锂低很多,根本不占优势。负极活性材料呢,即便是其能达到其理论值750mAh/g的比容量,其相对于研究比较活跃的硅负极(4200mAh/g)或者锡(900mAh/g)负极要低很多,而且石墨烯本身存在着缺陷,这样虽然可以嵌入很多锂,但是没办法脱嵌,这样就导致了一个很严重的问题:首次不可逆容量低。
打个比方,如果我们以全电池磷酸铁锂(175mAh/g)为正极,石墨烯为负极,如果首次效率为60%的话,磷酸铁锂就变为了105mAh/g,能量密度迅速下降,损失很多不必要的锂。
若在电池负极里面代替原来的石墨,虽然可以提升电池的整体容量和充电速度,但性能提升效果有限,并没到上文所述那般强势。

当然,这并不是阻碍石墨烯电池面市的主要原因,量产化困难的主要原因在其内部。
1、 全石墨烯电池成本十分高昂,而且制备难度大,几乎不可能量产。现在公布的一些惊人数据基本都来自纯度极高的石墨烯电池,仅出现在概念阶段或实验室内;
2、 “掺杂石墨烯电池”在锂电池上的作用是导电剂或电极嵌锂材料,但与传统的导电碳和石墨低廉的成本相比,前者带来的性能提升不足以吸引各厂家;
3、 石墨烯材料本身具有的高比表面积等性质,与现在的锂离子电池工业的技术体系无法相容;
4、 除此之外,比如其他材料的冲击(比如硅在做负极上有着更高的理论容量)和分散工艺难度高等问题,都制约着它在锂电池上的应用。
总之,首先要说明的是,石墨烯电池取代锂电池在中短期内基本是不可能的;“掺杂石墨烯锂电池”虽然有着一定的应用前景,但收效并不大,完全不足以撼动现今的格局。
在能源存储技术快速发展的今天,锂离子电池和钠离子电池因其卓越的性能被广泛应用于便携式电子设备、电动汽车和大规模储能系统中。但传统电池材料在电池能存多少电、充电有多快、反复充电能使用多久等方面都遇到了难......
当今的电动汽车热潮意味着将会有堆积如山的电子垃圾。尽管目前已有大量电池回收改进方案,但电动汽车电池最终仍被填埋处理。麻省理工学院的研究团队希望通过一种新型自组装电池材料改变现状,这种材料在浸入简单有机......
电动汽车、便携式电子产品和可再生能源存储需求的增长,使锂成为重要的资源。随着全球向清洁能源未来加速迈进,锂电池回收已变得至关重要。埃迪斯科文大学(ECU)的新研究指出,开发废旧电池作为锂的二次来源不仅......
中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......
荷兰开发的一种铁空气电池可储存超过100小时的能量,有助于提升可再生能源的稳定供应。该电池目前已成为全球首个成功接入电网的“生锈”电池。相关研究于7月30日发表在《新科学家》上。一种通过可逆生锈过程储......
按照《中华人民共和国标准化法》和《强制性国家标准管理办法》,工业和信息化部装备工业一司组织全国汽车标准化技术委员会开展了《汽车转向系基本要求》等三项强制性国家标准的制修订,已形成征求意见稿,现公开征求......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......
智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......