时钟速度(clock speed)是衡量一款电脑速度的重要标准,目前,个人计算机的时钟速度已经达到GHz级别,然而这还不够疯狂,现已有科学家运用石墨烯把该速度提高到了让人们吃惊的100GHz。
日前,莫斯科物理与技术研究院(MIPT)的科学家已经找到利用石墨烯来提高隧道电流的方法。石墨烯本质上是一个二维结构,尽管只是一张由碳原子组成的薄片,但它却拥有一些不寻常的电子特性。
传统晶体管的工作方式是其所包含的电子,由能量源激发,从一端穿过能量势垒跃迁到另一端产生电流。这是一种很好的工作方式,但目前人们不能使它们拥有更高的能源效率。
隧道晶体管相对于标准晶体管的运行功率更低。隧道晶体管所包含的电子因量子隧道效应穿过能量势垒,穿过能量势垒的过程就是电子“运输”的过程。但目前隧道晶体管的问题是,电流抵达另一端时就会因变得太小而无法使用。
研究者们通过构建模型来研究由两层石墨烯黏结在一起形成的双层石墨烯的性能,发现了一些奇怪的能量带和电子的能量范围。双层石墨烯的能量带类似于“墨西哥帽”的形状,而不是大多数半导体产生的抛物线形状。
在帽子形状边缘的电子密度趋于无穷大,当一个低电压施加到晶体管的栅极,大量的电子立即穿过隧道,结果导致能量势垒的另一端电流发生瞬间改变。这种结果与标准晶体管所表现的相同,但双层石墨烯晶体管需要的电压更低。
研究人员Dmitry Svintsov 说道:“这意味着晶体管需要的能量交换更少,芯片需要的能量更低,因而产生的热量也更少,不再需要强大的冷却系统对多余的热量进行冷却,更不用担心产生的多余热量会破坏芯片,进而时速得到大幅度提高。”
双层石墨烯晶体管的制备还可以略去复杂的“化学掺杂”,然而为了扩展半导体的能带,这个步骤对传统晶体管的生产而言是非常必要的。在不通过“化学掺杂”的情况下,对于双层石墨烯晶体管,通过“电子掺杂”同样可以实现半导体能带的扩展,这是相同过程下运行晶体管的副效应。
研究者们解释说“墨西哥帽”的边缘发生着许多重要的效应,这些效应在之前是很难被测量的,但是通过使用更高质量的基底(承载双层石墨烯的材料),他们第一次用实验清楚地证实了范霍夫奇点。
双层石墨烯在150mV电压范围内工作与硅晶体管在500mV电压范围内工作相比较,双层石墨烯晶体管的重要优势是可以首先有效地大幅提高计算能力。
Svintsov 说:“功率低,电子部件的温度也低,这意味着我们可以让芯片运行在极高的频率——不是GHz级别的提升,而是数十甚至上百倍。”
近日,国际电工委员会纳米电工产品与系统技术委员会(IEC/TC113)正式发布国际标准IECTS62607-6-23:2025Nanomanufacturing-Keycontrolcharacter......
中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......
近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......
智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......
荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......
在一项具有开创性意义的国际合作研究中,美国亚利桑那大学研究团队展示了一种利用持续时间不到万亿分之一秒的超快光脉冲来操纵石墨烯中电子的方法。通过量子隧穿效应,他们记录到了电子几乎瞬间绕过物理屏障的现象,......
中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚......
广东省科学院生态环境与土壤研究所流域水环境整治绿色技术与装备团队联合美国麻省大学教授邢宝山团队在石墨烯环境毒性机制研究领域取得重要进展。他们首次揭示腐殖酸吸附对石墨烯增强芽孢杆菌毒性的分子机制。近日,......