发布时间:2019-07-19 13:43 原文链接: 科学家利用机器学习让耐药检测更高效

  细菌耐药已成为影响全人类健康的重大问题,引起了全世界广泛的关注。世界卫生组织提出的解决耐药措施之一是研发耐药快速准确的新型诊断技术和相关试剂。传统的检测方法基于细菌培养,周期长,易导致漏诊、误诊,延误最佳治疗时机。而基于基因的检测技术,如具有灵敏、高效、快捷特点的基因芯片、数字PCR等技术,是公认的快速检测技术。然而,到目前为止,由于耐药基因型与表型结果的不一致,使得基因检测只能作为培养法的辅助手段用于耐药的检测。

  中国科学院微生物研究所冯婕研究组等针对肺炎链球菌β-内酰胺耐药这一重要临床问题,采用机器学习的方法挖掘耐药相关数据的规律,建立了基因型和表型之间的联系,使得基因检测不再是一个辅助手段,而有望成为一种主要的耐药快速检测技术。

  肺炎链球菌β-内酰胺耐药的主要机制是三种青霉素结合蛋白(PBP1a,PBP2b和PBP2x)的转肽酶结构域(TPD)的改变。由于不同临床肺炎链球菌分离株PBPs的高度变异性,以及链球菌间重组导致的嵌合结构,使得PBPs极具多样化,导致了很难将PBPs的突变与临床耐药性联系起来。冯婕组研究人员首先将NCBI数据库已公布的PBPs序列通过类别方差法计算,得到了139个与耐药高度相关的HVLs (highly variant amino acid)。再以4300株肺炎链球菌的转肽酶结构域(TPD)序列以及对应头孢呋辛、阿莫西林的耐药表型作为数据库,将其中80%的数据作为训练集,20%的数据作为检验集,用HVLs去预测头孢呋辛和阿莫西林的耐药水平,结果发现与用PBPs蛋白的TPD序列预测效果一样好。进一步分析发现,HVLs与PBPs的某些区域的序列有很强的相关性。因此,分别使用来自pbp2x (2253 bp)的750 bp片段和来自pbp2b (2058 bp)的750 bp片段可以很好地预测头孢呋辛和阿莫西林的耐药性。这种长度只需要一个Sanger测序反应即可,不仅使检测操作更加简单,也降低了成本。此外,通过对人工构建的突变体和来自更多临床分离的菌株的耐药表型的检测,进一步确认了机器学习法能精确预测耐药表型。应用该预测方法,研究人员分析了NCBI数据库中已测序的8138株肺炎链球菌,进而建立了耐药表型、血清型以及ST型之间的关联,促进了对肺炎链球菌的流行病学的认识。

  该研究成果在线发表于Briefings in Bioinformatics,中国科学院微生物研究所冯婕研究员与南方科技大学教授杨亮为共同通讯作者。该研究得到国家自然科学基金和北京市科学技术委员会的资助。

机器学习预测实验菌株的耐药水平

相关文章

固态纳米孔结合机器学习对抗衰寡肽的单分子分析取得进展

抗衰商品中的寡肽作为活性成分与皮肤细胞相互作用,加速胶原合成和纤维细胞增殖。寡肽活性成分一些是神经递质或酶抑制剂,另一些是信号肽或载体肽。研究对不同寡肽结构建立单分子特征分析方法,应用于市面不同抗衰产......

科学家基于机器学习研发超高饱和磁感铁基非晶/纳米晶软磁材料

随着高频大功率器件快速发展,系统能耗问题成为制约行业发展的瓶颈。若将电子控制系统比作人体,芯片如同大脑承担核心控制功能,负责数据处理、信号控制和逻辑运算等任务;而电感、变压器等磁性元器件则相当于执行各......

人工智能和机器学习解决方案将如何加速细胞和基因治疗领域创新

引言:“大鹏一日同风起,扶摇直上九万里。”细胞和基因治疗(CGT)领域在过去几年中取得了显著进步,其管线和批准产品的数量急剧增加。然而CGT市场仍然面临许多挑战,这些挑战阻碍了其增长并延迟了这些疗法的......

诺贝尔物理学奖:推动机器学习技术“爆炸式”发展

还记得那个横空出世即一路“狂飙”的ChatGPT吗?2023年以来,人工智能(AI)“百模大战”从硝烟燃起到全面打响,让人应接不暇。而AI模型背后的关键技术,正是机器学习。10月8日,瑞典皇家科学院宣......

诺贝尔物理学奖为何授予机器学习?

·辛顿开发的玻尔兹曼机成为了生成模型的早期例子。玻尔兹曼机常被用作一个大网络的一部分,可以用来根据观众的喜好推荐电影或电视剧。·机器学习与传统软件不同,传统软件的工作方式就像一种配方。传统软件接收数据......

科研人员利用机器学习方法解码原子核壳演化

近日,中国科学院近代物理研究所核物理中心吕冰锋副研究员和湖州师范学院王永佳教授等利用机器学习方法研究原子核低位激发态的能量和电磁跃迁几率,在探索原子核壳演化研究中取得重要进展。相关成果于9月10发表在......

运用可解释机器学习成功破解催化结构敏感性难题

李微雪教授结合物理启发的可解释机器学习算法与第一性原理计算,解决了一个多相催化研究中长期存在的关于催化结构敏感性难题。研究成果近日发表于《美国化学会》期刊。催化反应活性位及其结构敏感性是多相催化研究中......

美国开发出可加速材料创新的机器学习模型

美国罗切斯特大学科研人员开发出一个机器学习模型,可对X射线衍射(XRD)实验产生的大量数据进行分析以加速材料创新。科研人员利用涵盖了不同实验条件和晶体特性的无机材料实验数据来训练该模型,并根据布拉格定......

文章论述机器学习高精度化学反应势能面构建

近日,中国科学院大连化学物理研究所研究员傅碧娜和张东辉院士受邀发表了机器学习高精度化学反应势能面构建的综述文章,系统介绍了团队近几年在基本不变量-神经网络高精度势能面构建方法方面的发展和应用,探讨了该......

新进展!开发出寻找新型磁性材料的新方法

美国艾姆斯国家实验室(AmesNationalLaboratory)的科研人员开发出一个新的机器学习模型,该模型可预测新材料组合的居里温度(材料保持磁性的最高温度),用于寻找不含关键元素的永磁材料。科......