发布时间:2020-08-21 10:57 原文链接: 管住嘴这么难?科学家揭示促进进食的肠脑神经通路

  一到晚上就想吃、吃饱了还想吃,为什么管住嘴这么难?

  食欲的产生和消退一直都是科学家关注的问题。从肠胃到大脑,存在着一条迷走神经介导的通路。摄取足够营养时,肠胃会通过迷走神经将“吃饱信号”传递到大脑中的孤束核,并终止进食行为。

  但8月20日《当代生物学》发表的一项研究显示,饥饿感也可以通过这一神经通路传递到大脑,刺激食欲,发出“再多吃点”的指令。

  文章中,科学家研究了大脑感知饥饿的过程,捕捉到其中被饥饿信号刺激的神经元,进一步确认了谁在这之中起主要作用。

小鼠肠脑神经轴中的迷走神经通路,可以响应饥饿信号、促进进食。(图片来源:北京生命科学研究所)

  肚子饿时,脑子知道

  孤束核是位于大脑后侧的脑区,通过迷走神经与外周器官相连。当肠胃通过迷走神经传递信号,孤束核最先接收到信号,并将之传递到大脑其他部位。

  先前研究中,科学家分析了多种孤束核内的神经元类型,发现迷走神经到孤束核这条通路中,大部分神经元都和抑制、终止摄食有关。

  “理论上讲,机体作为能量平衡的体系,神经通路的信号应该不仅能传递抑制食欲的信号,也能传递促进进食的信号。”论文通讯作者、北京生命科学研究所影像中心主任、副研究员占成告诉《中国科学报》。这也是此次研究的出发点。

  与“吃饱信号”不同,饥饿的产生需要更长时间,这意味着研究小组捕捉神经信号的难度增加。实验中,研究人员对小鼠进行了一系列加工,可在较长时间范围内标记脑内较活跃的神经元。

  当小鼠处于饥饿状态,其脑内孤束核中被激活的神经元会被点亮。

  “我们发现,饥饿可以激活孤束核中的儿茶酚胺能(CA)神经元”,论文第一作者、占成课题组博士生陈静表示。

小鼠孤束核内的CA神经元在饥饿状态下被激活。(图片来源:北京生命科学研究所)

  研究小组用不同方法激活小鼠孤束核中的CA神经元。在化学遗传学实验中,他们发现,小鼠开始“大吃特吃”。原本在白天应该睡觉的小鼠也开始进食,且进食量增加了4-5倍。

  在光遗传学实验中,研究人员给小鼠头部植入一根毫米级光纤,用激光有规律地间断照射小鼠的孤束核,以激活CA神经元。光照开始后,小鼠在几十秒内就作出反应,开始进食。

课题组记录的小鼠进食行为。(图片来源:北京生命科学研究所)

  “这意味着孤束核确实存在响应饥饿信号的神经元,并促进进食。”陈静表示。

  细分类型,吃多吃少它俩说了算

  既然先前研究中找到的大部分神经元都在起抑制进食作用,那么究竟是谁让小鼠吃得更多?为此,占成等人又设计了一系列实验。

  研究小组分别激活小鼠孤束核前侧和后侧的CA神经元,发现不同区域、不同亚型的CA神经元起到的作用也不同。

  为了找到具体发挥作用的神经元类型,课题组与同所转基因动物中心主任王凤超、澳大利亚加文医学研究所Herbert Herzog等人合作,分别获得了可用于实验的转基因小鼠。

  陈静介绍,孤束核中的CA神经元包括肾上腺能(E)神经元和去甲肾上腺能(NE)神经元两种亚型。

  其中,孤束核后侧的NE神经元则主要负责让小鼠“停嘴”。

  而孤束核前侧和中侧的E神经元与另一种名为神经肽Y(NPY)的神经元一道,让小鼠胃口大开。“神经肽Y神经元与CA神经元关系密切,二者分布上部分共存、功能上相互调节。”陈静解释。

  当小鼠孤束核中的NPY神经元被杀死,单独激活孤束核前侧和中侧的E神经元时,老鼠的进食量不再增加。“这说明在进食过程中,E和NPY共表达的神经元发挥着重要作用。”陈静说。

研究发现了孤束核中具体起促进进食作用的神经元亚型。(图片来源:北京生命科学研究所)

  谁传的话?迷走神经

  之后,利用病毒示踪的方法,研究小组进一步确认,小鼠的孤束核能接受来自迷走神经节的信号输入。而阻断胃肠和大脑间的迷走神经通路后,饥饿信号不再能激活CA神经元。

  “这说明,饥饿信号是通过迷走神经传递到孤束核的。”陈静告诉《中国科学报》。

  “这项研究对后脑孤束核细胞在解剖学上进行了精细划分,并且成功剥离出一类肾上腺能神经元,它们接收来自胃肠器官的迷走神经传入,饥饿信号在此整合并被大脑感知,从而释放能量短缺信号,让动物开始进食。”中国科学技术大学先进技术研究院研究员刘际点评道。

  “有意思的是,与之相对应的,在孤束核的另一类神经元——去甲肾上腺素能神经元同样接收来自外周器官的迷走神经传入,介导的却是饱腹感,让动物停止进食。”刘际表示,这意味着在孤束核内,大脑通过自主神经系统对“吃”与“不吃”进行精确的阴阳平衡调控。

  “这项研究可以帮助我们理解大脑如何感知饥饿、感知营养,揭开食欲产生的机制。”占成表示,接下来,课题组还将继续深入研究,这条神经通路和体液通路之间的关联,并探究该神经通路究竟被何种肠胃信号激活。

相关文章

研究表明:运动与电子屏幕使用方式影响青少年大脑发育

芬兰东芬兰大学与库奥皮奥大学医院联合开展的两项新研究显示,青少年的运动习惯以及电子屏幕的使用方式等因素会显著影响其大脑功能和心理健康。相关研究成果已相继发表于国际学术期刊《神经科学前沿》和《神经科学》......

研究人员揭示大脑如何保护学会的技能不丢失

运动学习是指通过反复练习和经验积累,个体逐渐掌握、优化和巩固运动技能的过程。突触强化是记忆和技能形成的基本过程,而大脑必须要有能力防止这些突触在强化后出现不适当的突触去强化,以确保新获得的技能得以保留......

新研究揭示创造性活动延缓大脑衰老的生物学机制

一项针对多国舞者、音乐家、艺术家和电子游戏玩家的新研究发现,从事创造性活动能显著增强大脑中最易衰老区域的功能连接,从而延缓大脑衰老。相关论文近日刊发在英国《自然-通讯》杂志上。先前已有研究表明,创造性......

大脑植入物“读心”也有密码保护了

8月14日发表于《细胞》的一项研究显示,一种大脑植入物可以解码人的内心独白,但只有当用户想起预设密码时,该设备才能工作。这种“读心”装置,即脑机接口(BCI),能准确破译高达74%的想象句子。然而,只......

新研究揭示大脑注意力切换机制

人们以为自己是在持续、稳定地关注周围世界,但实际上,大脑处理感官信息的方式并非一条“连续流”,而是通过有规律的节奏性跳跃进行关注切换。以色列耶路撒冷希伯来大学最新研究提出,这种名为“注意力采样”的机制......

大脑统一“剧本”,助力理解大脑决策奥秘

你有没有想过,为什么两个司机看到同样的拥堵路况,一个猛踩油门冲进去,另一个却小心翼翼地刹车避让?其实在他们做出动作之前,大脑早已悄悄作了一个决定。而这个决定,并不是突然冒出来的,它就像一场精密排演的舞......

给予一段人类DNA,小鼠大脑变大了

科学家发现,将一段仅存在于人类基因组中的遗传片段插入小鼠体内后,它们的大脑会长得比通常情况更大。该段遗传代码像“旋钮”一样,调控着某些基因表达强度的DNA区域,主要通过增加小鼠神经元前体细胞的生成量,......

研究揭示大脑如何“导航”手

由中国科学院自动化研究所牵头的联合研究团队在大脑如何“导航”手的运动方面,获得了机理上的发现。他们通过记录猕猴执行自然抓取任务时的神经活动,首次发现在大脑的运动皮层中存在一种类似GPS(全球定位系统)......

实时意念说话设备让瘫痪者重新“开口”

《自然-神经科学》3月31日发表的一项研究报道了一个能将大脑言语活动实时转换成有声词汇的新设备。该技术可以帮助失语者重拾实时流畅交流的能力。当前涉及言语的脑机接口一般会在个人无声地尝试说话与计算机有声......

大脑的衰老速度受这64个基因的影响

一项3月12日发表于《科学进展》的研究显示,科学家发现了64个影响人类大脑衰老速度的基因,还确定了抗衰老药物和实验性化合物,这些药物和化合物可以针对这些基因逆转衰老。这是迄今为止针对大脑衰老的遗传因素......