发布时间:2022-07-08 10:33 原文链接: “自私超基因”严重破坏遗传多样性

美国罗切斯特大学的生物学家首次使用群体基因组学来阐明一种被称为分离变相因子(SD)的“自私遗传元素”的进化和后果。发表在《eLife》杂志上的论文表明,SD已导致染色体组织和遗传多样性发生了巨大变化。

人类基因组中充斥着“自私”的遗传元素,这些元素似乎对宿主没有好处,而只是寻求自我繁殖。

研究人员此次使用果蝇作为模式生物来研究SD。果蝇有大约70%的基因与导致人类疾病的基因相同,而且由于它们的繁殖周期短至不到两周,科学家们能够在相对较短的时间内创造出几代果蝇。

正如孟德尔遗传定律所预期的那样,雌性果蝇将受SD感染的染色体传递给大约50%的后代。然而,雄性会将SD染色体传递给其近100%的后代,因为SD会杀死任何不携带自私遗传元素的精子。

几十年来,研究人员已知道SD进化为一种超基因,但这是他们第一次使用群体基因组学研究SD的动态、进化和对基因组进化的长期影响。群体基因组学是一种检查群体中个体之间DNA序列变异的全基因组模式。

作为超基因的优势在于,多个基因可共同作用,导致SD几乎完美地传递给后代。然而,正如研究人员发现的那样,超基因存在重大缺陷。

在有性生殖中,来自母亲和父亲的染色体交换遗传物质以产生每个后代独有的新遗传组合。在大多数情况下,染色体正确排列并交叉。科学家们早就认识到,通过交叉(称为重组)进行的遗传物质交换至关重要,因为它使自然选择能够消除有害突变并促进有益突变的传播。

而自私遗传元素通过关闭重组以确保将其传递给所有后代,从而获得了短期传播优势。但SD并不具有“前瞻”性:与正常染色体相比,阻止重组导致SD积累了更多有害突变。

相关文章

研究构建染色体融合小鼠模型、模拟染色体演化过程

9月21日,CellResearch在线发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)李劲松研究组撰写的题为Creationofartificialkaryotypesinmi......

科学家成功模拟漫长演化的染色体重排事件

近日,中科院院士、中科院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员李劲松研究组开发出基于类精子干细胞技术的小鼠染色体改造研究系统。利用该技术,可以建立染色体融合小鼠品系,成功模拟了自......

塑造着丝粒分布的“世纪之谜”解开

自1800年代以来,科学家们已经注意到细胞核中着丝粒的分布问题。着丝粒是一种特殊染色体区域,对细胞分裂至关重要,但其分布的决定机制和生物学意义仍悬而未决。日本东京大学团队最近提出了一种塑造着丝粒分布的......

男性不育?从X染色体上找问题

近日,一项发表于《美国人类遗传学杂志》的国际研究发现,X染色体上的50多个基因产生突变可能导致精子生成不良。近一半精子数低或为零的男性不问题仍未有医学解释。在过去几年中,研究仅确定了可能与精子产生问题......

“自私超基因”严重破坏遗传多样性

美国罗切斯特大学的生物学家首次使用群体基因组学来阐明一种被称为分离变相因子(SD)的“自私遗传元素”的进化和后果。发表在《eLife》杂志上的论文表明,SD已导致染色体组织和遗传多样性发生了巨大变化。......

“自私超基因”严重破坏遗传多样性

美国罗切斯特大学的生物学家首次使用群体基因组学来阐明一种被称为分离变相因子(SD)的“自私遗传元素”的进化和后果。发表在《eLife》杂志上的论文表明,SD已导致染色体组织和遗传多样性发生了巨大变化。......

“自私超基因”严重破坏遗传多样性

美国罗切斯特大学的生物学家首次使用群体基因组学来阐明一种被称为分离变相因子(SD)的“自私遗传元素”的进化和后果。发表在《eLife》杂志上的论文表明,SD已导致染色体组织和遗传多样性发生了巨大变化。......

人类孕育后代为什么这么难?“自私”染色体在作祟

英国科学家的最新研究表明,“自私染色体”可以解释为什么大多数人类胚胎会早亡。这项近日发表于《公共科学图书馆—生物学》的研究解释了为什么鱼类胚胎生存良好,而人类胚胎往往无法存活。该研究这对不孕不育治疗具......

小黑麦遗传多样性及重要性状位点鉴定方面获进展

小黑麦是由小麦和黑麦经种间杂交和染色体加倍培育而成的一种新异源多倍体物种,具有草产量高和抗逆等特性,是重要的粮饲兼用作物。但是,小黑麦遗传多样性及控制重要农艺性状位点的遗传机制尚不清楚,限制了小黑麦的......

象腿蕉染色体级别基因组组装研究获进展

中国科学院华南植物园海外知名学者JohnSeymourHeslopHarrison教授领导的研究团队,在象腿蕉染色体级别基因组组装研究方面取得新进展。相关研究发表于Gigascience。王梓维为该文......