发布时间:2021-06-29 17:33 原文链接: 认识泛基因组测序

什么是泛基因组?

2005年,Tettelin等人提出了微生物泛基因组概念(pangenome,pan源自希腊语‘παν’,全部的意思),泛基因组即某一物种全部基因的总称。2009 年,Li等人首次采用新全基因组组装方法对多个人类个体基因组进行拼接,发现了个体独有的DNA序列和功能基因,并首次提出了“人类泛基因组”的概念,即人类群体基因序列的总和。2009 年泛基因组测序首次应用于人类基因组学研究;2013 年泛基因组测序应用于动植物研究领域。

如图,泛基因组进而可以分为,核心基因组(core genome)和可变基因组 (variable genome)。核心基因指的是,在所有动植物品系或者菌株中都存在的基。可变基因组是指,在1个以及1个以上的动植物品系或者菌株中存在的基因。如果某个基因,仅存在某一个动植物品系或者菌株中,该基因还可以细分为品系或者菌株特有基因。一般来说,核心基因组控制着生命体基本生成代谢的功能。另外,结构变异中的存在/缺失变化(presnece/absence variation)是泛基因组的重点研究对象,因为可变基因组可能就是使个体产生不同性状(抗病性,抗寒性等)的原因。

为什么我们要开展泛基因组测序?

在漫长的进化过程中,由于地域因素,环境因素等的影响,每个个体都形成了极其特别的遗传性状,单一个体的基因组已经不能涵盖这个物种的所有遗传信息,另外一个原因,由于基因测序变得更加廉价,为近年来火爆的泛基因组的研究提供了可能性。

泛基因组是近年来比较流行的一种研究方向,通过对不同品种基因组进行测序,组装,然后将组装好的基因序列进行整合注释,进而获取这个物种全部的遗传信息并且对每一个个体间遗传变异信息进行解析。

技术路线

组装技术对比

目前比较流行的研究方法与三种:K-mer based assembly,重头组装和 迭代组装)

下面主要给大家讲解讲:重头组装 和 迭代组装两种方法。

重头组装的方法

这是构建泛基因组最经典的方法,分别对多个个体进行,分别的De novo assembly,然后将所得的每个个体的新组装的序列与参考序列reference基因组进行比对,找出比对不上的区域,再进行进一步的assembly,然后注释。此方法需要更多的电脑资源,因为需要对每一个个体进行分别进行重头组装,然后还需要全基因组比对。该方法比较适合基因组相对较小的植物。

迭代组装的方法

相当于一种迭代的方式,分别将每一个材料的reads比对到参考基因组中,然后找出没有比对上的部分进行组装,得到新的基因序列进而扩展原有的参考序列。一步一步这样迭代,直到所有的种系都处理完。最后建立起的泛基因组,再进行注释。这种方法,相对需要更少电脑资源,比较适合构建基因size相对较大的植物泛基因组,但是可能会产生更多的小片段。

应用

泛基因组测序是运用高通量测序及生物信息分析手段,针对不同亚种/个体材料进行测序及泛组装,构建泛基因组图谱,丰富该物种的遗传信息。泛基因组测序不仅可以获得多个基因组,完善该物种的基因集,还可以获得种群甚至个体特有的DNA序列和功能基因信息,为系统进化分析及功能生物学研究奠定基础。泛基因组也可以看作是对重测序数据的一种挖掘,挖掘发现每一个材料中独特的基因,进而进行进一步的分析。

选择不同亚种材料进行泛基因组测序,可以研究物种的起源及演化等重要生物学问题;选择野生种和栽培种等不同特性的种质资源进行泛基因组测序,可以发掘重要性状相关的基因资源,为科学育种提供指导;选择不同生态地理类型的种质资源进行泛基因组测序,可以开展物种的适应性进化,外来物种入侵性等热门科学问题的研究,为分子生态学等学科提供新的研究手段。

还有我认为泛基因组还可以应用到寻找新的snps。

泛基因优势如下:


  1. 对比单一的reference基因,可以有效提高可发现的snps数量



  2. 用泛基因组去calling snps 意味着你可以节省很多电脑资源和分析时间。(正常snap calling需要比对到不同的个体上,但如果通过泛基因组去calling snps,就可以一步到位,因为这个pangenome 相当于所有个体的集合。另外,这也意味着,你得出的snps 组不需要整合(传统的snp calling需要整合,因为需要比对到不同个体上)



  3. 还有一个好处就是,因为pangenome包括了进一步presence/absence variations 的分析,我们可以区别出这种snp是属于核心基因的,还是属于可变基因的。然后,再结合你表现型的数据,这对利用snp提高农作物产量是很有意义的。


参考文献:

  1. Golicz, Agnieszka A., Jacqueline Batley, and David Edwards. "Towards plant pangenomics." Plant biotechnology journal 14.4 (2016): 1099-1105.

  2. Golicz, Agnieszka A., et al. "The pangenome of an agronomically important crop plant Brassica oleracea." Nature communications 7 (2016): 13390.

  3. Hurgobin, Bhavna, and David Edwards. "SNP Discovery Using a Pangenome: Has the Single Reference Approach Become Obsolete?." Biology 6.1 (2017): 21.

代表文献

  1. Li, Ying-hui, et al. "De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits." Nature Biotechnology32.10 (2014): 1045-1052.

  2. Maretty, Lasse, et al. "Sequencing and de novo assembly of 150 genomes from Denmark as a population reference." Nature (2017).d


相关文章

年度盘点:2023年阿尔茨海默病研究初现曙光

阿尔茨海默病(AD)又称老年痴呆,起病隐匿,病程缓慢且不可逆,以智能障碍为主。随着人口老龄化的进展,全球AD患者数量逐年增加,严重危害中老年人的健康,也给家庭和社会带来沉重的负担。回望2023年,AD......

Nature最新文章:基因测序游戏规则正在被改写,速度翻倍,仅需数小时

超高速测序推动基因组诊断快速发展简化的DNA和RNA测序工作流正在帮助临床医生在几天甚至几小时内提供迅速的有针对性的护理    约十年前,澳大利亚墨尔本的默多克......

瑞孚迪:改变千万新生命——全基因组测序在新生儿筛查中的应用

导读:这项技术可以及早发现那些可能对患儿生命产生重大影响的罕见疾病。     瑞孚迪的这项首创研究证明了全基因组测序在对看似健康的新生儿的筛查中存在重......

立足“东方大湾区”:因美纳携手海普洛斯打造国产旗舰桌面测序系统

2023年12月11日,中国深圳——12月9日,全球基因测序和芯片技术的领导者因美纳携手中国肿瘤液体活检和基因大数据高新技术企业海普洛斯共同宣布,首台NextSeq™2000Dx-CN-HAP国产基因......

迄今最大全基因组测序数据公布!产业链受益上市公司梳理

经过历时5年、超35万小时的基因组测序以及超2亿英镑的投资,英国生物银行30日发布了迄今为止世界上最大的全基因组测序数据。英国生物银行首席研究员罗里·柯林斯表示,对于从事健康研究的科学家来说,这是名副......

高通量测序基因分型系统规范即将实施!

国家标准《信息技术生物特征识别高通量测序基因分型系统规范》将于2023年12月1日正式实施。该标准由TC28(全国信息技术标准化技术委员会)归口,TC28SC37(全国信息技术标准化技术委员会生物特征......

4000万!20232026年中国科学院测序和质谱检测项目公开招标

公告信息采购项目名称2023-2026年度测序服务商采购项目品目服务/科学研究和试验开发/其他研究和试验开发服务采购单位中国科学院遗传与发育生物学研究所行政区域北京市公告时间2023年11月03日14......

贝瑞基因:基于三代测序平台单分子实时测序技术的动态突变检测dmTGS

贝瑞基因正式推出基于三代测序平台单分子实时测序技术的动态突变检测dmTGS,能够进一步拓展疾病检测范围,一次性检测41个基因导致的48种动态突变疾病。......

NMPA:非小细胞肺癌组织TMB检测试剂盒(可逆末端终止测序法)获批上市

近日,国家药品监督管理局批准了南京世和医疗器械有限公司生产的“非小细胞肺癌组织TMB检测试剂盒(可逆末端终止测序法)”创新产品注册申请。该产品用于体外定性检测EGFR基因突变阴性和ALK阴性的非鳞状非......

中国银河给予诺禾致源买入评级,目标价位30.0元

中国银河证券股份有限公司程培近期对诺禾致源进行研究并发布了研究报告《平台切换影响短期业务节奏,看好核心业务长期成长》,本报告对诺禾致源给出买入评级,认为其目标价位为30.00元,当前股价为20.61元......