发布时间:2022-12-13 15:06 原文链接: 调控弓形虫的缓殖子转化取得新进展

  12月8日,山西农业大学动物医学学院朱兴全教授团队在国际综合性学术期刊《自然-通讯》发表论文,发现弓形虫蛋白磷酸酶2A(PP2A)全酶介导的去磷酸化在弓形虫生长、淀粉代谢和缓殖子转化中起重要作用,为进一步解析弓形虫碳水化合物代谢及缓殖子转化调节机制提供了重要新见解。

  磷酸化和去磷酸化反应是生命过程中十分重要的反应,参与生物体内许多重要的生命活动。蛋白磷酸酶是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分子,与蛋白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。

  弓形虫是一种专性细胞内寄生原虫,具有高度复杂的生命周期,在人和大多数哺乳动物大脑、肌肉组织中可以终身寄生。因此毫不奇怪,它们复杂的生命活动需要磷酸化和去磷酸化精细地调节。该研究发现,弓形虫蛋白磷酸酶2A全酶由一个结构亚基PP2A-A、一个催化亚基PP2A-C和一个调节亚基PP2A-B组成。通过CRISPR-Cas9技术对PP2A进行敲除,发现弓形虫缺失任何一个PP2A亚基都会显著影响弓形虫的生长,并有大量的淀粉颗粒在虫体间和虫体内聚集。前期研究表明弓形虫CDPK2激酶能够调节淀粉的代谢,缺失CDPK2会导致大量的淀粉颗粒在虫体间和虫体内聚集,但不影响速殖子向缓殖子的转化。本研究通过SILAC组学技术发现,CDPK2激酶是PP2A的一个潜在底物,弓形虫缺失PP2A后,CDPK2 S679的位点磷酸化水平显著升高;PP2A通过调控CDPK2激酶的S679位点的去磷酸化来调节CDPK2的活性,并进而调控淀粉代谢。

  该研究还发现,任何PP2A亚基的缺失都会导致弓形虫不能由速殖子向缓殖子转化。通过组学手段鉴定出PP2A的4个潜在底物,发现这4个底物缺失后都会影响弓形虫由速殖子向缓殖子转化,PP2A可能通过调控参与缓殖子转化蛋白的磷酸化水平。

  相关论文信息:https://doi.org/10.1038/s41467-022-35267-5

相关文章

“改造”后的弓形虫有妙用,可向神经元递送治疗性蛋白质

寄生虫弓形虫因为可以侵入人体中枢神经系统而一直被“人人喊打”,但科学家决定利用这一特征让它充当治疗工具。《自然·微生物学》29日报告了一个在动物模型中改造弓形虫的方法,使其可穿过血脑屏障,向寄主神经元......

华中农大团队发现抗弓形虫药物设计新靶标

近日,华中农业大学农业微生物资源发掘与利用全国重点实验室、湖北洪山实验室、动物医学院申邦团队在人兽共患寄生原虫——弓形虫的营养代谢机制研究方面取得重要进展。该团队发现定位于弓形虫顶质体的一类全新的丙酮......

人兽共患弓形虫适应机制获揭示

近日,华南农业大学新发和人兽共患病研究中心教授肖立华和冯耀宇团队与合作者在人兽共患病原体弓形虫核糖代谢研究中获得重要突破,他们研究揭示了人兽共患弓形虫适应寄生生活的代谢适应机制。相关成果在线发表于《自......

养猫可能增加精神分裂症风险?几率很小

·“由于猫只在很短的时间内排出生物体,因此人类通过与它们一起生活的猫接触而感染弓形虫的机会相对较小。也就是说,养猫并不意味着会感染弓形虫。”养猫可能增加患精神分裂相关疾病的风险?近日,澳大利亚昆士兰州......

调控弓形虫的缓殖子转化取得新进展

12月8日,山西农业大学动物医学学院朱兴全教授团队在国际综合性学术期刊《自然-通讯》发表论文,发现弓形虫蛋白磷酸酶2A(PP2A)全酶介导的去磷酸化在弓形虫生长、淀粉代谢和缓殖子转化中起重要作用,为进......

人兽共患弓形虫适应寄生生活的代谢新机制获揭示

近日,华南农业大学兽医学院寄生虫团队、岭南现代农业科学与技术广东省实验室和华中农业大学动物医学院等单位合作,阐明了磷酸戊糖代谢在人兽共患病原体弓形虫生长和代谢中的作用与机理。相关研究在线发表于PLOS......

JITC:弓形虫会成为免疫治疗的新助力吗?

免疫检查点疗法是近年来癌症治疗领域备受瞩目的“明星”,但很多患者无法从中获益一直是该领域内科学家们想要努力攻克的新课题。肿瘤免疫原性低,免疫细胞浸润少,也就是所谓的“冷”肿瘤,这是患者无法响应免疫检查......

Science关注:弓形虫可能会增加精神分裂症风险

养猫的人可能都了解过“弓形虫”(Toxoplasmagondii),一种由猫科动物携带的脑寄生虫,约1/3的人会感染。弓形虫不是细菌或病毒,而是一种与引起疟疾的寄生虫有关的单细胞微生物。猫在食用受感染......

一种新的弓形虫血液快诊方法,灵敏度和特异性均为100%

当人食用未经烹煮的污染肉类或接触被来自遭受急性感染的猫的粪便污染的材料时,弓形虫(Toxoplasmagondii)就会入侵人类宿主。当前检测这种感染的方法包括血清测试,这需要在发展中地区使用通常成本......

Cell:CRISPR/Cas9再获重要突破

Whitehead研究所的科学家们首次对顶复门(Apicomplexa)生物进行了全基因组筛选。这项重要的研究成果于九月二日发表在Cell杂志上。顶复门的单细胞寄生虫会引起疟疾、巴贝斯虫病、隐孢子虫病......