发布时间:2021-12-08 13:15 原文链接: 这款无腿软体机器人能快速持续跳跃

软体机器人跨越障碍物的跳跃实验 重庆大学机械工程学院供图

软体机器人跨越障碍物的跳跃实验 重庆大学机械工程学院供图

  重庆大学陈锐、上海大学蒲华燕等研制出一款无腿的软体机器人,可进行快速、持续的可控跳跃。该发现提供了一种新方法,可在绳系模型机器人中产生敏捷的多模态运动。相关研究12月8日发表于《自然—通讯》。

  一些机器人需要靠跳跃来拓展其导航范围、越过障碍以及适应非结构化的环境。要做到加强软体机器人的跳跃高度和距离以改进其越障能力,同时保持对跳跃频率的控制以增进机动性和导航,目前仍是一个难题。

  陈锐、蒲华燕和合作者开发了一个1克重、6.5厘米长的机器人,这种机器人具有能朝前跳跃的内部结构,由灵活的、电力驱动的液体再分配来提供动力。他们的研究表明该机器人能跳到自身身高的7.68倍高度,每秒能持续向前跳跃体长的6倍距离。

  研究还展示了该机器人能越过包括陡坡、电线、堆积的砾石和不同形状立方体等障碍。通过联结两种制动器(使机器人运动的组件),这个机器人能够以每秒138.4度的速度可控地跳跃。

  陈锐等还展示了其他功能性电子设备(如传感器),可以集成到制动器上,从而实现包括侦测环境变化在内的多种应用,并建议未来进行结构优化以改进软体机器人的跳跃性能。他们表示,未来对无绳方案的进一步研究或可增进这类软体机器人的通用性。

  相关论文信息:

  https://doi.org/10.1038/s41467-021-27265-w


相关文章

哈工大科研团队研发磁控3D打印新技术实现磁性薄壁软体机器人精准制造

近日,哈尔滨工业大学机电工程学院谢晖教授团队研发出一种可精准控制打印结构磁化分布的光固化3D打印技术。相关研究成果发表在《自然通讯》(NatureCommunications)上,为精准制造磁性薄壁软......

软体机器人能轻松爬过环路和弯道

美国普林斯顿大学和北卡罗来纳州立大学工程师,将古代折纸技术和现代材料科学结合起来,创造出一种软体机器人,可轻松穿过迷宫。发表在最新一期《美国国家科学院院刊》杂志上的文章中,研究人员描述了他们用模块化的......

软体机器人能轻松爬过环路和弯道

软体机器人由多个部分组成,这些部分可折叠成扁平圆盘并延伸成圆柱体。图片来源:普林斯顿大学科技日报北京5月15日电 (记者张梦然)美国普林斯顿大学和北卡罗来纳州立大学工程师,将古代折纸技术和现......

新型磁驱软体机器人实现高效安全药物转运

中国科学院深圳先进技术研究院医工所副研究员徐海峰团队在《美国化学学会—纳米》杂志发表最新成果。研究团队开发了一种用于靶向递药的磁驱软体机器人,该微型机器人能根据器官内不同地形的机械特点,运用与环境最安......

美国重建细胞骨架构建“微管回路”

1月24日,美国普林斯顿大学在其网站发布研究成果,他们构建了细胞骨架回路并重构微管结构。受神经系统轴突的启发,研究人员将分支微管成核路径与微纳加工相结合,开发了“细胞骨架回路”,将其用于开发纳米技术平......

滚动、旋转和绕轨移动新软体机器人可同时进行三种行为

美国北卡罗来纳州立大学研究人员设计了一种新的软体机器人。它可同时进行3种行为:向前滚动,像唱片一样旋转,以及沿着围绕中心点运行的路径移动。该设备无需人工或计算机控制即可运行,有望开发可用于导航和绘制未......

科研人员开发出物理智能控制的新型软体机器人

继螺丝粉机器人后,北卡罗莱纳州立大学机械航空系副教授尹杰团队最近研发出一种能像轮胎一样滚动、像陀螺一样旋转、像卫星一样绕轨道运行的新型软体机器人。1月8日,该研究论文发表在《美国国家科学院院刊》(PN......

灵感来源发卡!这项研究被Nature亮点报道

万物皆有启发,无论是迅疾的猎豹,还是一枚小小的发卡——而正是这两个风马牛不相及的事物,给同一个研究团队先后带来了灵感。研究过程很美好,但投稿却不太顺利。尽管研究成果遭遇顶刊婉拒,但论文一作赤银鼎并没有......

沈阳自动化所磁热联合驱动微型软体机器人研究取得进展

近日,中国科学院沈阳自动化研究所机器人学国家重点实验室微纳米自动化课题组在磁热联合驱动的微型软体机器人研究中取得新进展。科研人员利用4D打印技术制备的软体机器人在近红外光和磁场的联合驱动下,展示了弯曲......

磁热联合驱动微型软体机器人研究取得进展

近日,中国科学院沈阳自动化研究所机器人学国家重点实验室微纳米自动化课题组在磁热联合驱动的微型软体机器人研究中取得新进展。科研人员利用4D打印技术制备的软体机器人在近红外光和磁场的联合驱动下,展示了弯曲......