发布时间:2018-06-04 13:29 原文链接: 院士专家研讨:神奇的二维材料能让世界怎么变

如果你的手机触屏是二维材料制作的,那你完全不用担心它会碎屏……如此神奇的二维材料,究竟是什么?它能带给世界怎样的改变?

近日,“首届丝绸之路国际二维材料科技会议”在西北工业大学举办,国内外近百位院士、专家学者会聚一堂,共同研讨二维材料精彩无限的发展空间。

3D和三维一直是21世纪以来的热门词语,例如3D电影、3D打印等。在这些行业中,三维不但意味着更好的视觉效果,还意味着更高的技术水平。然而,对于某些领域来说,事情却不是这样。

2000多年前,哲学家就曾对物质本源的问题产生过激烈的讨论。原子派认为物质在无限分割之后,最终会小到无法分割。所以他们把组成的物质称为原子,寓意为不可分割。

随着时间的流逝,虽然现代依然沿用了原始的词语“原子”,但是其不可分割的本意早已名存实亡。科学家在近百年通过物理手段证明原子是可以分割的。原子的定义变成了保持化学性质的最小单位。

即便原子是可以分割的,但最大的原子仍然达不到肉眼可见的程度。可以说,人们目前能够看到的物质都是由原子三维堆叠而成的。如果能把原子平铺为一层,那么这种物质便是当之无愧的二维材料。

我们通常所说的二维材料,是指电子仅可在两个维度的非纳米尺度(1-100nm)上自由运动的平面材料。不同于一般纳米材料、三维材料、一维材料。

2004年,两名英国物理学家成功地将只有单个原子厚的石墨烯,从石墨中剥离出来,即最初的二维材料,两人还因此获得了诺贝尔奖。因为石墨烯是一种性能极其优异的材料,不仅透明导电,而且硬度极高,兼具柔韧性。10多年来,石墨烯的研究成果不断涌现。

一层保鲜膜厚的石墨烯,需要一头5吨重的大象站在铅笔上形成的压力才能将其刺穿。如果将这个技术应用到电脑、电视、手机触摸屏上,显然不用担心碎屏了。

石墨烯的发现,极大推动了二维材料领域的研究。人们还发现了二硫化钨、二硫化钛、二硒化钼、碲化锑及碲化铋等二维材料,这些材料都具备各自特殊的性质,用途超乎想象,人类对二维材料的研究还只是刚刚开始。

“材料领域学科跨度大、范畴广、种类多,一直以来呈现多点开花、热点频出的创新态势。”据参会专家介绍,二维材料是当下的前沿领域之一,涵盖了印刷电子、柔性电子、超级电容、太阳能电池、量子点、传感器、半导体制造等,具有十分优异的机械、热学、光学特性,是多领域实现颠覆式创新的基础。

目前,美国、英国、韩国、日本、新加坡等国已将二维材料研究提升至国家战略高度。我国在该领域虽启动稍晚,但科研队伍体量大、后劲足,是研究最活跃、最具创造力的区域之一。随着近几年经费投入的不断增长,研究广度不断拓宽,有些方向已经取得了令人瞩目的成绩,作出了全球范围内具有开创性的工作。

虽然二维材料的研究、应用都已取得长足发展,但其实际应用和产业化需求仍有相当距离。同时,二维材料家族中仍有不少备受期待的新材料尚未被研制出来,部分二维材料的物理、化学性质也有待揭示。中国科学院院士、北京大学博雅讲席教授刘忠范在会议报告中坦言:“我们需要不断提升二维材料的品质,这是一条漫长而崎岖的道路,没有捷径可言。”

“举办这次交流活动的意义,就是为了促进西安高校和科研院所与国内外学者的交流、合作与沟通,为二维材料的研发注入活力,创造机遇。”中国科学院院士、西北工业大学常务副校长黄维表示。


相关文章

上海微系统所牵头制定的《石墨烯薄膜的载流子迁移率和方块电阻测量:霍尔棒法》国际标准发布

近日,国际电工委员会纳米电工产品与系统技术委员会(IEC/TC113)正式发布国际标准IECTS62607-6-23:2025Nanomanufacturing-Keycontrolcharacter......

一种等离子处理二维材料引入缺陷的通用方法获揭示

表面增强拉曼散射(SERS)是一种高灵敏度和特异性的技术,广泛应用于化学分析、食品安全、医学诊断和环境科学等领域。近年来,二维材料如石墨烯、过渡金属二硫化物等,因其原子级平整的表面、良好的化学稳定性和......

这种热门二维材料大于7种金属更好掺入

化学家们使一个热门二维材料——MXenes家族成员数量翻了一番,甚至创纪录地将9种金属嵌进单一材料中。这为设计大量奇怪但有用的物质打开了大门。相关研究近日发表于《科学》。MXenes家族此前就备受关注......

科学家直接证实锯齿型石墨烯纳米带本征磁性

中国科学院上海微系统与信息技术研究所研究员王浩敏团队联合上海师范大学副教授王慧山,首次在实验中直接证实了锯齿型石墨烯纳米带(zGNRs)的本征磁性,加深了对石墨烯磁性性质的理解,也为开发基于石墨烯的自......

石墨烯量子点制备研究获进展

富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......

石墨烯量子点制备研究获进展

富勒烯(C60)因独特的光电、催化和润滑性能而备受关注。但是,C60在强相互作用的金属表面难以形成有序的聚合物结构。因此,如何捕捉到C60聚合过程中的关键中间体并实现可控转化是材料合成领域的挑战。近日......

石墨烯合成迎新进展

近日,中国科学院兰州化学物理研究所的科研团队与瑞士巴塞尔大学、奥地利萨尔茨堡大学的学者携手,在富勒烯(C60)的研究上取得了重大进展,成功揭示了富勒烯如何转化为石墨烯(一种由单层碳原子组成的二维材料,......

学者开发出分离性能可切换的石墨烯智能分离膜

智能膜与主动分离技术是膜研究的新兴领域,能够在外界刺激下实现分离性能的可逆调控。近日,清华大学深圳国际研究生院副教授苏阳、山东理工大学副教授赵金平、大连理工大学副教授张宁等合作发现,将氧化石墨烯和石墨......

石墨烯中首次演示量子自旋霍尔效应

荷兰代尔夫特理工大学科学家首次在无需外部磁场的条件下,观测到石墨烯中的量子自旋流。这一突破性发现为自旋电子学的发展提供了关键支持,标志着向实现量子计算和先进存储设备迈出了重要一步。相关成果发表于最新一......

世界首台非硅二维材料计算机问世

硅在支撑智能手机、电脑、电动汽车等产品的半导体技术中一直占据着王者地位,但美国宾夕法尼亚州立大学领导的一个研究团队发现,“硅王”的统治地位可能正在受到挑战。该团队在最新一期《自然》杂志上发表了一项突破......