石墨炔材料是一种唯一能通过低温、常压下合成,同时含有sp和sp2两种杂化形式碳的二维平面全碳材料,是中国科学家在国际上引领的新的研究领域,具有中国知识产权。目前石墨炔已实现了样品的快速宏量制备,及百平方厘米大面积、高质量薄膜的可控制备(图1)。石墨炔具有大共轭体系、优异的导电性能、及优良的化学稳定性,特别是丰富的分子孔道可以提供更多的存储空间及位点,有利于锂钠等金属的吸附及传输。因此,石墨炔材料在多种储能器件方面均展现出优异的综合性能和巨大的应用空间。石墨炔的基础和应用研究,一直吸引世界各国科学家的目光。

  近日,在中国科学院院士李玉良的指导下,中科院青岛生物能源与过程研究所研究员黄长水带领的碳基材料与能源应用研究组,将石墨炔类材料先后应用于锂离子电池、钠离子电池、超级电容器、锂硫电池等多种能源存储器件,并对石墨炔材料结构与电化学性能之间的构效关系进行了深入研究(图1)。

  该研究组研发、制备了一类新型的硼代石墨炔,并通过理论计算与器件性能表征相结合的方式对其能带结构、电化学性能及储钠机制进行深入分析。通过理论计算,研究了硼代石墨炔材料的能级在炔键(sp碳)与中心杂原子(B)上的分布情况,并进一步分析该类材料能级结构与在实验中所展现的输运性能之间的关系。通过对硼代石墨炔双层排列构型的理论分析结果与实验中获得XRD散射角及分子孔道孔径与分布情况相结合,探讨了硼代石墨炔分子结构与分子平面堆积方式,以及孔径结构之间的内在联系。研究发现,硼代石墨炔对钠原子特殊的化学吸附作用,可以获得极高的理论储钠容量。器件测试结果也证实以硼代石墨炔为电极材料的钠离子电池,具有优异的综合性能,充分显示了该类材料在钠离子电池器件中具备很强的应用潜力,开创了新型储能器件电极材料研究的新方向。相关研究成果被选为VIP文章发表在《德国应用化学》上。

  研究工作获得国家自然科学基金重大项目、中科院“百人计划”、山东省杰出青年基金等的支持。

相关文章

新型高质量无添加剂石墨烯油墨可用于3D打印

近日,中国科学院大连化学物理研究所研究员吴忠帅团队和中国石油大学(华东)吴明铂教授团队合作,在3D打印石墨烯微型超级电容器研究方面取得新进展。合作团队开发出一种适用于3D打印的高质量无添加剂石墨烯油墨......

离子体化学气相沉积技术构筑金刚石石墨材料研究方面获进展

共价金刚石-石墨材料集合了金刚石和石墨的性质优势,能够实现超硬、极韧、导电等优越性能组合,在超硬和电子器件领域具有研究和发展价值。目前,由于金刚石-石墨共价界面能高,主要通过高温高压方法活化碳原子以实......

我所实现3D打印石墨烯微型超级电容器构筑与单片集成

近日,我所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队和中国石油大学(华东)吴明铂教授团队合作,在3D打印石墨烯微型超级电容器研究方面取得新进展,开发出一种适用于3D......

氮磷共掺杂碳材料与磷化铁集成电极材料问世

安徽理工大学材料科学与工程学院副教授黄新华在电容去离子研究领域取得新进展,制备出氮磷共掺杂碳基材料和磷化铁分散氮、磷掺杂多孔碳电极材料,并将上述两种材料用于高选择性去除废水中重金属铜离子。相关研究成果......

《中国药典》0512高效液相色谱法修订公示稿梳理系统适用性及应对方案

本篇介绍系统适用性试验部分修订内容!理论塔板数、分离度现行版通则:当对测定结果有异议时,色谱柱的理论板数(n)和分离度(Rs)均以峰宽(W)的计算结果为准。修订公示稿提到:当对测定结果有异议时,色谱柱......

XRF在石墨微量无机组分分析中的应用

本文摘要本文介绍了马尔文帕纳科为石墨微量无机组分提供了一种前处理简单、环保、安全且快速的分析方法。这套XRF分析方法,采用压片制样,样品无需消解,过程自动化程度极高,为选矿、研发及生产提供了更高效、便......

一文详解“锂离子电池负极材料”

人们研究过的锂离子电池负极材料种类繁多,主要有石墨、硬炭、软炭等碳材料,钛酸锂、硅基、锡基等非碳材料。负极材料要求为了保证良好的电化学性能,对负极材料要求如下:①锂离子嵌入和脱出时电压较低,使电池具有......

金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展

多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚......

城市环境所在废弃生物质多孔碳电容脱盐电极材料研究中取得进展

近日,中国科学院城市环境研究所郑煜铭团队(污染防治材料与技术研究组)在废弃生物质多孔碳应用于电容脱盐方面取得新进展。该研究揭示了提高碳电极材料石墨氮含量对增强电容脱盐性能的内在机制。碳材料因储量丰富、......

出比钢铁更坚固的轻质二维材料

来自莱斯大学和马里兰大学的科学家们带头努力克服了一个主要障碍。尽管被认为是地球上最强的一些物质,但利用它们的全部潜力已被证明是一项困难的任务。比最薄的洋葱皮纸还要细的二维材料,由于其显著的机械属性,已......