发布时间:2019-11-19 16:16 原文链接: 非核糖体肽合成酶三维结构有助深入认识抗生素合成

  在一项新的研究中,来自加拿大麦吉尔大学的研究人员在理解在产生抗生素和其他治疗性药物中起着不可或缺作用的酶的功能方面取得了重要的进步。相关研究结果发表在2019年11月8日的Science期刊上,论文标题为“Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility”。


图片来自McGill University。

  论文通讯作者、麦吉尔大学生物化学系副教授Martin Schmeing博士说,“我们如今依赖的许多药物都是由地球上的微生物制造的天然产物。它们包括由在微生物中大量存在的非核糖体肽合成酶(nonribosomal peptide synthetase, NRPS)制造的化合物。NRPS合成各种类型可以杀死危险真菌和细菌的抗生素,以及有助于我们抵抗病毒感染和癌症的化合物。比如,这些化合物包括紫霉素(viomycin),即一种用于治疗耐多药结核病的抗生素;环孢菌素(cyclosporin),它已被广泛用作器官移植中的免疫抑制剂;以及熟悉的抗生素青霉素(penicillin)。”

  为了合成这些药物,NRPS的运作类似于由一系列工作站组成的工厂组装线。每个称为“模块(module)”的工作站具有多步工作流程和移动部件,这允许它添加一个构成单元(building block)到药物中间体中。

  了解这种组装线的内部运作

  Schmeing博士和其他人的先前研究工作让人们对一个模块的工作原理有了深刻的了解。如今,通过利用位于萨斯喀彻温省的加拿大光源(Canadian Light Source)和位于伊利诺斯州的先进光子源(Advanced Photon Source)进行X射线晶体衍射分析(X-ray crystallography),Schmeing团队能够获得NRPS的超高分辨率三维图片。

  这些研究人员首次能够通过可视化制造抗生素线性短杆菌肽(linear gramicidin)的NRPS的一种双模块部分,对单个模块与更大的组装线之间的关系进行高质量的观察。他们吃惊地发现,除了不同模块必须协调才能将药物中间体从一个工作站传递到下一个工作站之外,在剩余的时间里,这些模块之间缺乏同步性。此外,他们发现这些模块不是以直线或其他有组织的方式排列,而是可以在许多不同的相对位置排列。Schmeing博士说:“这种高度的灵活性是出乎意料的。这些酶就是在进行表演体操。”

  鉴于在X射线晶体衍射分析中,蛋白NRPS形成晶体,因此科学家们要小心确认所获得的结果是否代表了真实发生的情形。Schmeing博士与他的同事、麦吉尔大学生物化学系教授Alba Guarné博士合作,使用在位于伯克利的先进光源(Advanced Light Source)收集的补充性溶液数据来验证这些观察结果。Schmeing博士说:“麦吉尔大学在结构生物学方面是非常强大的。我们共同合作,互相帮助,获得开展前沿实验所需的生物物理设备,并对我们的学生进行培训。”

  对未来药物设计的影响

  从长远来看,这些结果可能对新型抗生素和治疗药物的制造产生影响。自从首次发现NRPS以来,科学家们对NRPS进行生物工程改造---混合和匹配工作站---制造定制化合物的可能性感到兴奋。Schmeing博士解释说:“我们的研究表明,应该可以混合和匹配这些模块,但是必须在将化合物从一个模块传递到另一个模块的过程中,对生物工程化的NRPS进行修改。这是我们与法国索邦大学的Martin Weigt合作完成的,但是需要对定制药物的制造进行优化。”

相关文章

有望治疗耐药菌感染,纳米“光镊”可捕获和操纵噬菌体

近日消息,瑞士和法国科学家携手,开发出一种芯片上的纳米“光镊”,能以最小光功率捕获、操纵和识别单个噬菌体,有望加速甚至改变基于噬菌体的疗法,治疗具有抗生素耐药性的细菌感染。相关研究论文发表于最新一期《......

核糖体结合“预组织”的抗生素克服了超级细菌

哈佛大学和其他地方的研究人员创造了一种合成抗生素,可以非常有效地对抗困扰许多现代抗生素的抗菌素耐药机制。一篇新的《科学》论文提供了该抗生素的设计、合成和评估的详细信息,题为“一种预先组织用于核糖体结合......

突破|新抗生素显著增强抑制耐药菌功效

细菌的抗生素耐药性正在使许多现代药物失效,甚至可能引起全球公共卫生危机。现在,美国哈佛大学研究人员开发的一种新抗生素克服了抗生素耐药性机制。据最新一期《科学》杂志报道,合成化合物克雷霉素(cresom......

消除抗生素污染新方法,速率更高、产物更安全!

抗生素在环境中残留会给人类健康带来危害,而在许多抗生素中,包括青霉素、阿莫西林、头孢氨苄等在内的β-内酰胺类抗生素用量占比约为70%。围绕水中β-内酰胺类抗生素的降解难题,近日,中国科学院化学研究所研......

最新研究:一种新型抗生素有望战胜一类多重耐药菌

当地时间1月3日起,英格兰近五万名初级医生开始为期六天的罢工,就薪酬问题抗议。分析指出,新一轮罢工将会影响冬季医疗需求高峰期间的就诊体验。2023年,英国医疗系统工作者曾进行一系列罢工,要求提高薪资待......

蚂蚁也会用抗生素?神奇的马塔贝莱蚁

马塔贝莱蚁广泛分布于撒哈拉沙漠以南,其饮食范围很窄:它们只吃白蚁。它们的狩猎探险是危险的,因为白蚁士兵会保护它们的同类,并使用它们强大的下颌骨来战斗。因此,马塔贝莱蚁在狩猎时受伤是很常见的。一只马塔贝......

中国科学院:水中抗生素污染去除研究取得进展

环境中残留的抗生素及其引起的耐药基因传播,给人类健康带来危害。在众多种类抗生素中,β-内酰胺类抗生素(如青霉素、阿莫西林、头孢氨苄等)用量占比约为70%。目前常用的生物降解方法处理效率因抗生素分子本身......

算法会诊降低儿科抗生素使用率

根据《自然·医学》近日发表的一篇论文,坦桑尼亚一项大规模随机临床试验发现,一种“算法会诊”,即数字决策支持工具可显著降低医生给儿童开抗生素药物处方的概率,且不会影响临床结局。研究报告图片来源:《自然·......

如何降低儿科抗生素使用率?《自然·医学》一文指出·······

根据《自然·医学》近日发表的一篇论文,坦桑尼亚一项大规模随机临床试验发现,一种“算法会诊”,即数字决策支持工具可显著降低医生给儿童开抗生素药物处方的概率,且不会影响临床结局。科研团队研究成果细菌耐药性......

应对耐药性问题,AI筛选发现全新抗生素

美国麻省理工学院布罗德研究所和哈佛大学科学家借助人工智能(AI)的力量,通过筛选数百万种化合物,发现了一类全新的抗生素。这类抗生素能杀死两种不同类型的耐药细菌,为应对全球性的抗生素耐药性挑战带来了新希......