Antpedia LOGO WIKI资讯

激光光谱学介绍

以激光为光源的光谱学分支。激光的谱线宽度窄、强度高和方向性好等独特优点给光谱学带来了全新的面貌,它不仅具有极高的光谱分辨率和探测灵敏度,而且还开拓了包括非线性效应和相干拉曼光谱学等在内的许多新领域。......阅读全文

激光光谱学介绍

  以激光为光源的光谱学分支。激光的谱线宽度窄、强度高和方向性好等独特优点给光谱学带来了全新的面貌,它不仅具有极高的光谱分辨率和探测灵敏度,而且还开拓了包括非线性效应和相干拉曼光谱学等在内的许多新领域。

激光光谱学在燃烧诊断中的应用

  煤炭、石油、天然气及其他燃料在把温暖、光明和力量带给人类的同时,也严重地污染着大气、影响着全球的气候变化甚至一个国家的政治和经济的发展。因此,燃烧过程的诊断和控制构成了燃烧科学的重要内容。现在,每当人们提到燃烧科学时,总是将经济效益、安全和环境保护等问题放在一起加以考虑。前两个间题可以通过优化燃

光谱学

  光谱是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。  光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,成为一门专门的学科

详细介绍光谱学的含义和光谱分类

  光谱学是一门主要涉及物理学及化学的重要交叉学科,通过光谱来研究电磁波与物质之间的相互作用。光是一种由各种波长(或者频率)的电磁波叠加起来的电磁辐射。光谱是一类借助光栅、棱镜、傅里叶变换等分光手段将一束电磁辐射的某项性质解析成此辐射的各个组成波长对此性质的贡献的图表。  &nb

光谱学的定义

光波是由原子运动过程中的电子产生的电磁辐射。各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同。研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学。分子的红外吸收光谱一般是研究分子的振动光谱与转动光谱的,其中分子振动光谱一直是主要的研究课题。

生物组织光谱学技术

  利用光学方法进行生物组织机能和结构的定量分析已成为生物医学工程领域中的一种强有力的手段。尤其是无损光谱学技术已引起人们的极大重视并努力研究。它可以通过光在组织中传播的特性求出被福射组织内的光空间分布,并且借此确定治疗中的生理效应,如激光手术、光动力治疗等。对于大脑、乳腺、肌肉及其它组织,根据组织

光谱学的区分方法

  光谱学区分为发射光谱学、吸收光谱学与散射光谱学。这些不同种类的光谱学从不同方面提供物质微观结构知识及不同的化学分析方法。

什么是吸收光谱学?

  分子或原子团在各个波段均有特征吸收,主要表现为分子光谱所特有的带状吸收谱(见光谱)。广泛被采用的红外吸收光谱是由分子的同一电子态内不同振动和转动能级间的跃迁产生。红外吸收光谱主要用来研究分子的能级结构和分子结构,或进行分子的定性和定量分析等。对吸收光谱和发射光谱的研究常互为补充。

什么是发射光谱学

物体发光直接产生的光谱叫做发射光谱 (emission spectrum)。研究发射光谱的学问是发射光谱学。

光谱学的起源和发展

  光谱学的研究已有三百多年的历史了。1666年,I.牛顿把通过玻璃棱镜的太阳光展成从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是最早对光谱的研究。其后一直到1802年,W.H.渥拉斯顿与1814年 J.von夫琅和费彼此独立地观察到了光谱线。每条谱线只代表一种“颜色