Antpedia LOGO WIKI资讯

俞书宏:过渡金属盐催化有机小分子碳化的合成新途径

从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。 碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、催化、电子器件和聚合物等领域有着广泛的应用。特别是拥有高的比表面积、多孔结构、理想的杂原子掺杂等特征的碳纳米材料,更受青睐。但开发简单、廉价、可控的方法宏量制备碳纳米材料依然面临巨大挑战。 有机小分子因其广泛存在、种类多样、元素丰富,是一种理想的制备碳纳米材料的前驱体。但在高温下有机小分子的高挥发性使得其作为原料制备碳纳米材料必须使用复杂方法和设备,如化学气相沉积和高压密闭合成。 针对上述挑战,研究人员提出一种过渡金属辅助有机分子碳化的方法,通过使用过渡金属盐辅助热解有机小分子来制备碳纳米材料。在高温热解过程中,过渡金属盐不仅能提......阅读全文

俞书宏:过渡金属盐催化有机小分子碳化的合成新途径

  从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。  碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、

俞书宏:过渡金属盐催化有机小分子碳化的合成新途径

  从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。  碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、

新途径:过渡金属辅助有机小分子碳化

  碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、催化、电子器件和聚合物等领域有着广泛的应用。特别是拥有高的比表面积、多孔结构、理想的杂原子掺杂等特征的碳纳米材料,其应用将更加具有竞争力。传统碳化低蒸气压的自然产物(如纤维素和淀粉)很难控制所得碳材料的微观结构

重大进展!中国科大:过渡金属辅助有机小分子碳化

  碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、催化、电子器件和聚合物等领域有着广泛的应用。特别是拥有高的比表面积、多孔结构、理想的杂原子掺杂等特征的碳纳米材料,其应用将更加具有竞争力。传统碳化低蒸气压的自然产物(如纤维素和淀粉)很难控制所得碳材料的微观结构

廉价过渡金属催化领域的研究进展

  近日,南方科技大学理学院化学系副教授舒伟课题组围绕廉价金属催化的选择性合成等绿色精准催化主题进行了系统研究,取得了一系列进展,相关成果发表在Angewandte Chemie、Nature Communications以及ACS Catalysis等化学领域高水平期刊。  α-手性酰胺片段广泛存

过渡金属催化剂是生命起源的关键

  要解释生命如何在地球上出现这个悬而未决的大问题,就像是回答先有鸡还是先有蛋的悖论:诸如氨基酸和核苷酸这样的基本生化物质,是如何在生物催化剂(蛋白质或核酶)出现之前而完成其构造的?在最新一期《生物学通报》(The Biological Bulletin )上,科学家发

基于过渡金属催化脱羧的交叉偶联反应研究获进展

  联芳烃化合物普遍存在于天然产物、药物和有机功能材料的结构骨架之中,以廉价易得、易于控制的原料出发,经过简洁方便的路径合成联芳烃化合物吸引了众多化学工作者的关注。  在国家重大科学问题导向项目、国家自然科学基金重点项目和中科院重要方向项目的资助下,中国科学院福建物质结构研究所结构化学国家重点实验室

什么是过渡金属?

过渡金属是指元素周期表中d区的一系列金属元素,又称过渡元素(由于ⅠB族元素(铜、银、金)在形成+2和 +3 价化合物时也使用了d电子;ⅡB族元素(锌、镉、汞)在形成稳定配位化合物的能力上与传统的过渡元素相似,因此,也常把ⅠB和ⅡB族元素所在的ds区列入过渡金属之中。

什么是过渡金属?

过渡金属是指元素周期表中d区的一系列金属元素,又称过渡元素(由于ⅠB族元素(铜、银、金)在形成+2和 +3 价化合物时也使用了d电子;ⅡB族元素(锌、镉、汞)在形成稳定配位化合物的能力上与传统的过渡元素相似,因此,也常把ⅠB和ⅡB族元素所在的ds区列入过渡金属之中。一般来说,这一区域包括3到12一共

福建物构所在过渡金属界面催化研究中取得进展

  氢能作为一种二次清洁能源越来越受到人们的重视。目前中国、美国、加拿大、日本和欧盟等都制定了相应的氢能发展规划,我国已在氢能领域取得了多方面的进展,在将来有望成为氢能技术应用领域的先锋。氢气通常需要通过其它能源途径制取;电解水作为一种零污染的制氢方法,具有极高的应用潜力。当前,电解水制氢的最大问题