Antpedia LOGO WIKI资讯

细胞化学基础植物叶绿体基因组基因表达调控的研究

叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式。转录水平调节。转录后调节与修饰。莱茵衣藻核基因组与叶绿体基因组遗传转化体系的建立,以及许多光合途径缺陷突变体的分离为研究转录后调节提供了一个非常有用的模式系统。遗传分析表明RNA加工和RNA编辑为影响叶绿体基因表达转录后调节的因素。翻译水平调节。翻译水平调节可使生物快速地适应外界环境条件,特别对于高效表达基因,当环境条件不利时,可通过翻译水平快速调节,从而减少代谢能源的消耗。RNA水平和细胞器代谢状态影响叶绿体蛋白的翻译, 这种调节可能是通过核糖体蛋白反式磷酸化来完成的。翻译后调节与修饰。对于质体编码的叶绿素。在每个叶原基细胞增殖过程中......阅读全文

细胞化学基础--植物叶绿体基因组基因表达调控的研究

叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式。转

细胞化学基础--叶绿体基因组 - cpDNA

叶绿体基因组在很多方面与线粒体基因组的结构是相似的。叶绿体DNA(cpDNA)是双链环状,缺乏组蛋白和超螺旋。cpDNA中的GC含量与核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度离心来分离cpDNA。每个叶绿体中cpDNA的拷贝数随着物种的不同而不同。但都是多拷贝的。这些拷贝位于类核

细胞化学基础--蓝藻和叶绿体基因组的比较研究

原核的蓝藻和真核植物(包括其他藻类)中的叶绿体,都同样进行放氧的光合作用,这为人类和整个生物界提供了赖以生存的食物、氧气、能源和原料。对叶绿体和蓝藻的细胞结构和分子生物学特性作分析,证明真核生物的叶绿体可能起源于蓝藻祖先的内共生。这使蓝藻在20多年来已成为光合作用研究的模式生物。蓝藻基因组的作图和测

细胞化学基础--叶绿体DNA

叶绿体DNA,英文chloroplast DNA,缩写cpDNA,存在于叶绿体内,双链环状,长度中间值通常为45微米,具有独立基因组。一个叶绿体含有10~50个cpDNA。

细胞化学基础--叶绿体DNA

chloroplast DNA(cpDNA),存在于叶绿体内的DNA。高等植物叶绿体的DNA为双链共价闭合环状分子,其长度随生物种类而不同,其大小在120kb到217kb之间,相当于噬菌体基因组的大小,例如,T4噬菌体的基因组约165kb。叶绿体DNA不含5-甲基胞嘧啶,这是鉴定cpDNA及其纯度的

中国植物叶绿体基因组研究颠覆学界认知

  中国科学家一项历时五年的研究成果颠覆了学界对植物叶绿体基因组的认知——科学家发现整个叶绿体基因组都是可以转录的。该研究成果已于近日发表在了《自然》出版集团的《科学报告》上。  《科学报告》的审稿专家一致认为,“这一成果首次发现了我们从来没有想象过的现象,颠覆了传统遗传学上认为的只有叶绿体编码基因

研究发现植物叶绿体基因组可以全部转录的新机制

  叶绿体是地球上绿色植物把光能转化为化学能、供给地球上的其它生物能量来源的重要细胞器,对叶绿体的功能和叶绿体基因组转录机制的研究一直以来是全球细胞生物学家、遗传学家和分子生物学家孜孜以求的研究热点。中国科学院昆明植物研究所研究员高立志带领的研究团队,历时五年,通过对三种高等植物(水稻、玉米和拟南芥

叶绿体基因组

叶绿体是地球上绿色植物把光能转化为化学能的重要细胞器,叶绿体中进行的光合作用是严格地受到遗传控制的。早在20世纪初,人们就已知叶绿体的某些性状是呈非孟德尔式遗传的,但直到60年代才发现了叶绿体DNA(chloroplast DNA,ctDNA)。叶绿体基因组是一个裸露的环状双链DNA分子,其大小在1

细胞化学基础--环腺苷酸对基因表达的调节

AMP是一个重要的基因表达调控物质(Monall,1991)。在原核生物中cAMP被认为是直接活化RNA聚合酶以促进转录,即通过该酶的6因子的磷酸化来实现促进InRNA转录。近年来的研究表明,真核细胞中cAMP的作用与转录因子调节有关。Montndny等(1986)发现许多cAMP诱导转录的真核基因

版纳植物园叶绿体比较基因组学研究取得进展

  樟科油丹属树种木材质优,国际市场上的商品名为“medang”,和楠木树种的亲缘关系较近。以往的分子系统学研究表明油丹属为复系类群,但与润楠属、鳄梨属和楠属等的系统关系尚不明晰。  近日,中国科学院西双版纳热带植物园生物多样性研究组以分布于印度南部的油丹模式种Alseodaphne semecar