揭示量子点能量转移光催化新机制

近日,中科院大连化学物理研究所研究员吴凯丰团队在量子点能量转移与光催化研究中取得新进展。团队揭示了一种基于铅卤钙钛矿量子点三线态传能敏化有机分子异构化及环加成的新路径,并且获得了较高的量子效率和转化率。相关研究成果发表在《德国应用化学》,并受到三位审稿人的一致高度评价,被期刊选为VIP(Very Important Paper)文章。 无机量子点到有机分子的三线态传能对基础研究和光化学应用都具有重要意义。从应用角度而言,前期的量子点三线态传能研究主要着眼于三线态湮灭光子上转换。考虑到有机分子三线态在光化学合成(例如光异构化、环加成等)领域的重要角色,该传能机制的应用可拓展至光化学合成。此外,前期的量子点光催化研究主要基于量子点的光致电荷转移,由于电荷转移催化过程会产生高反应活性的带电或自由基中间体,给量子点的稳定性带来挑战。相比而言,在能量转移光催化循环中,光敏剂始终保持电中性,可有效避免活性物种对光敏剂的腐蚀。因此,......阅读全文

揭示量子点能量转移光催化新机制

近日,中科院大连化学物理研究所研究员吴凯丰团队在量子点能量转移与光催化研究中取得新进展。团队揭示了一种基于铅卤钙钛矿量子点三线态传能敏化有机分子异构化及环加成的新路径,并且获得了较高的量子效率和转化率。相关研究成果发表在《德国应用化学》,并受到三位审稿人的一致高度评价,被期刊选为VIP(Ver

我所揭示量子点能量转移光催化新机制

 近日,我所光电材料动力学研究组 (1121组) 吴凯丰研究员团队在量子点能量转移与光催化研究中取得新进展,揭示了一种基于铅卤钙钛矿量子点三线态传能敏化有机分子异构化及环加成的新路径,获得了较高的量子效率和转化率。  无机量子点到有机分子的三线态传能对基础研究和光化学应用都具有重要意义。从应用角度而

中科院大连化物所揭示量子点能量转移光催化新机制

  近日,中科院大连化学物理研究所研究员吴凯丰团队在量子点能量转移与光催化研究中取得新进展。团队揭示了一种基于铅卤钙钛矿量子点三线态传能敏化有机分子异构化及环加成的新路径,并且获得了较高的量子效率和转化率。相关研究成果发表在《德国应用化学》,并受到三位审稿人的一致高度评价,被期刊选为VIP(Very

研究实现低毒性量子点电子转移与能量转移光催化

近日,中科院大连化学物理研究所研究员吴凯丰团队在量子点电荷/能量转移与光催化研究中取得新进展,实现了一类低毒性量子点作为强还原剂和三线态敏化剂的有机光催化应用。相关研究成果发表在《德国应用化学》上。 光诱导电荷/能量转移被广泛应用于各类有机催化反应。常见的光敏剂主要是吸收可见光的有机分子或过渡金

大连化物所实现低毒性量子点电子转移与能量转移光催化

  近日,中科院大连化物所光电材料动力学研究组(1121组)吴凯丰研究员团队在量子点电荷/能量转移与光催化研究中取得新进展,实现了一类低毒性量子点作为强还原剂和三线态敏化剂的有机光催化应用。  光诱导电荷/能量转移被广泛应用于各类有机催化反应。常见的光敏剂主要是吸收可见光的有机分子或过渡金属(例如钌

揭示量子点激子精细能级裂分及量子拍频新机制

近日,中科院大连化学物理研究所研究员吴凯丰团队等在胶体量子点超快光物理研究中取得新进展。团队观测到CsPbI3钙钛矿量子点中激子精细结构裂分导致的系综量子拍频,并提出了一种通过温度诱导晶格畸变进而调控裂分能的新机制。相关成果发表于《自然—材料》。 在半导体量子点中,形貌或晶格对称破缺导致的

揭示量子点激子精细能级裂分及量子拍频新机制

近日,中国科学院大连化学物理研究所光电材料动力学研究组研究员吴凯丰团队等在胶体量子点超快光物理研究中取得新进展,观测到CsPbI3钙钛矿量子点中激子精细结构裂分导致的系综量子拍频,并提出一种通过温度诱导晶格畸变进而调控裂分能的新机制。  在半导体量子点中,形貌或晶格对称破缺导致的电子-空穴各向异性交

我所揭示量子点激子精细能级裂分及量子拍频新机制

近日,我所光电材料动力学研究组 (1121组) 吴凯丰研究员团队等在胶体量子点超快光物理研究中取得新进展,观测到CsPbI3钙钛矿量子点中激子精细结构裂分导致的系综量子拍频,并提出了一种通过温度诱导晶格畸变进而调控裂分能的新机制。  在半导体量子点中,形貌或晶格对称破缺导致的电子—空穴各向异性交换作

量子点—分子杂化体系的近红外热延迟发光获实现

  近日,中科院大连化物所光电材料动力学研究组 (1121组) 吴凯丰研究员与杜骏副研究员团队在量子点—有机分子能量传递机制与应用的研究中取得新进展,采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。  研究团队前期对量子点—有机分子的三线态能量转移(TET

大连化物所实现量子点—分子杂化的近红外热延迟发光

近日,大连化物所光电材料动力学研究组 (1121组) 吴凯丰研究员与杜骏副研究员团队在量子点—有机分子能量传递机制与应用的研究中取得新进展,采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。研究团队前期对量子点—有机分子的三线态能量转移(TET)机制研究表明

大连化物所揭示铁电光催化反应的新机制

  近日,我所太阳能研究部(DNL16)李灿院士、范峰滔研究员等通过构筑双极性电荷收集结构,促进了铁电光催化全分解水,并揭示了铁电光催化反应的新机制。  在光催化过程中,提高太阳能转化效率的核心问题是提高光生电子和空穴的分离效率,构筑内建电场是提高电荷分离的有效手段。由于自发的不对称电荷分离和高于带

纳米晶三线态能量转移动力学研究取得新进展

   近日,中科院大连化物所光电材料动力学吴凯丰研究员团队基于量子限域的CsPbBr3纳米晶与多环芳烃分子构建模型异质结,并结合稳态和飞秒瞬态光谱,揭示了该体系内纳米晶量子限域效应主导的三线态能量转移动力学过程,清晰地展示了转移速率对纳米晶载流子表面概率密度的线性依赖关系。相关成果发表于《美国化学会

大连化物所纳米晶三线态能量转移动力学研究取得新进展

  近日,中国科学院大连化学物理研究所光电材料动力学特区研究组研究员吴凯丰团队基于量子限域的CsPbBr3纳米晶与多环芳烃分子构建模型异质结,并结合稳态和飞秒瞬态光谱,揭示了该体系内纳米晶量子限域效应主导的三线态能量转移动力学过程,清晰地展示了转移速率对纳米晶载流子表面概率密度的线性依赖关系。相关成

大连化物所纳米晶敏化分子三线态动力学研究取得新进展

  近日,中国科学院大连化学物理研究所光电材料动力学创新特区研究组研究员吴凯丰团队基于量子限域的钙钛矿纳米晶有效地实现了可见光驱动的萘三线态敏化。相关成果发表于《物理化学快报》(The Journal of Physical Chemistry Letters)上。  萘作为形式最简单、三线态能量最

研究揭示手性选择能量转移的秘密

中国科学技术大学合肥微尺度物质科学国家研究中心教授张国庆团队揭示了在分子尺度下,“用左手性分子把能量传递给左手性分子,或者用右手性分子把能量传递给右手性分子”这种同手性分子能量转移的效率,要远高于“用左手性分子把能量传递给右手性分子,或者用右手性分子传递给左手性分子”的奇特现象,并为高效的手性识别提

我所揭示吸热电荷分离态介导的三线态能量转移新机制

  近日,我所光电材料动力学特区研究组(11T6组)吴凯丰研究员团队在无机/有机界面三线态能量转移动力学研究方面取得新进展,首次提出并在实验上论证了吸热电荷分离态介导的三线态能量转移新机制。  无机纳米晶到有机分子的三线态能量转移(TET)是一个新兴的动力学研究领域,对基础研究和光化学应用都具有重要

量子点自旋驰豫诱导分子三线态生成新机制

近日,大连化物所光电材料动力学研究组(1121组)吴凯丰研究员团队在量子点光化学应用领域研究中取得新进展,揭示了一种量子点自旋驰豫诱导分子三线态生成的新机制,并探索了该机制的重要应用。   传统意义上,自旋相关的量子现象研究是物理学的范畴,但近年来化学家合成的各类材料也

研究揭示基于强磁场调控石墨烯量子点的光学性质

  石墨烯量子点(GQDs)是一种小尺寸的二维纳米材料。近年来,因其稳定性、生物相容性、荧光可调性以及易被肾脏清除等特点,在癌症诊疗一体化中具有极大的应用,在生物医学领域引起了极大关注。现有应用于光热治疗的GQDs的光学吸收主要集中于近红外一区。然而,皮肤和组织的吸收以及散射使得近红外一区的激光穿

大连化物所实现高效分子三线态敏化和湮灭的光子上转换

  近日,中国科学院大连化学物理研究所光电材料动力学特区研究组研究员吴凯丰团队,通过同时调控无机半导体纳米晶的波函数分布和表面受体分子的构型,采用时间分辨光谱,观测到无机/有机界面三线态能量转移中的“Through-space”与“Through-bond”机制,并基于此实现高效的分子三线态敏化和三

半导体量子点作为光催化二氧化碳还原催化剂

  在自然界中,光合生物能够在太阳光的照射下利用光合色素将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气),该过程是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。受此启发,利用可见光还原的方式将二氧化碳转化为具有高附加值的化学品和/或太阳能燃料(如CO、HCOOH、CH3OH、CH4

碳点和碳量子点的区别

一、含义不同:量子点一般是从铅、镉和硅的混合物中提取出来的,但这些量子点一般有毒,对环境也有很大的危害。所以科学家们寻求在一些良性的化合物中提取量子点。相对金属量子点而言,碳量子点无毒害作用,对环境的危害很小,制备成本低廉。它的研究代表了发光纳米粒子研究进入了一个新的阶段。二、用途不同:碳点(CDs

大连化物所观测到掺杂量子点中的“声子瓶颈”动力学现象

  近日,中国科学院大连化学物理研究所光电材料动力学特区研究组研究员吴凯丰团队在半导体量子点热电子驰豫动力学研究方面取得新进展,首次观测到了铜掺杂量子点中热电子驰豫的“声子瓶颈”效应。  在大多数无机半导体材料中,具有高于半导体带隙能量的热载流子会与晶格(声子)碰撞,快速(亚皮秒级别)弛豫至带边,导

大连化物所观测到掺杂量子点中的“声子瓶颈”动力学现象

  近日,中国科学院大连化学物理研究所光电材料动力学特区研究组研究员吴凯丰团队在半导体量子点热电子驰豫动力学研究方面取得新进展,首次观测到了铜掺杂量子点中热电子驰豫的“声子瓶颈”效应。  在大多数无机半导体材料中,具有高于半导体带隙能量的热载流子会与晶格(声子)碰撞,快速(亚皮秒级别)弛豫至带边,导

量子点LED应用方案

应用背景量子点发光二极管(Quantum dot light-emitting diode,简称QLED)是一种以量子点为发光层的电致发光器件,其结构和发光原理与有机发光二极管相似。量子点(Quantum dots,简称QD)是一类纳米尺寸的半导体材料,通常呈胶体状态,常见的

量子点控制方法找到

  据来自剑桥大学的消息,该校研究人员日前找到了能够控制半导体量子点中原子核排列的方法,从而为开发量子存储器提供了可行途径。  量子点是由数千个原子组成的晶体,每一个原子都与被捕获的电子发生磁相互作用。如果不干涉的话,这种拥有核自旋的电子相互作用,限制了电子作为量子比特(量子位)的作用。剑桥大学卡文

量子点是什么技术

量子点实际上是纳米半导体。通过施加一定的电场或光的压力,这些纳米半导体材料,它们会发出特定频率的光,这种半导体的频率变化,通过调节纳米半导体的大小可以控制它发出的光的颜色,由于纳米半导体具有有限的电子和空穴(电子眼)的特点,这一特点在本质上是相似的原子或分子被称为量子点。量子点是重要的低维半导体材料

量子点生物应用指南

量子点是尺寸在 1-100 纳米的半导体材料(包括Ⅱ-Ⅵ族,Ⅲ-Ⅴ族,Ⅳ族等),具有明显的量子效应。与传统的有机荧光染料相比,具有灵敏度高,稳定性好,荧光寿命长等优势。量子点的特殊的光学性质使得它在光化学、分子生物学、医药学等研究中有极大的应用前景。量子点最有前途的应用领域就是作为荧光探针应用于生物

代谢调控血栓形成的新机制和治疗新靶点被揭示

  上海交通大学医学院刘俊岭课题组与孙海鹏课题组合作首次将支链氨基酸(BCAA)代谢与血小板功能和血栓风险建立紧密联系,揭示了一个全新的BCAA代谢调控血小板活化和血栓形成的机制。3月23日,该成果发表于《血液循环》。  由于摄入BCAA被广泛用于专业运动员和运动人士增肌营养物,BCAA注射剂被用于

研究揭示代谢调控血栓形成的新机制和治疗新靶点

  上海交通大学医学院刘俊岭课题组与孙海鹏课题组合作首次将支链氨基酸(BCAA)代谢与血小板功能和血栓风险建立紧密联系,揭示了一个全新的BCAA代谢调控血小板活化和血栓形成的机制。3月23日,该成果发表于《血液循环》。  由于摄入BCAA被广泛用于专业运动员和运动人士增肌营养物,BCAA注射剂被用于

基于量子点的单分子荧光示踪技术揭示分子马达的行走...

基于量子点的单分子荧光示踪技术揭示分子马达的行走机制在生物体内,分子马达参与肌肉收缩、胞质运输、DNA转录以及有丝分裂等一系列重要的生命活动。在执行上述功能过程中,分子马达需要借助ATP水解释放的能量,完成在细胞骨架上的特定运行轨迹。因此,关于分子马达沿着细胞骨架的行走机制的研究,对于深刻认识分子马