激光拉曼光谱对LiFePO4/C正极材料包覆碳结构的研究

激光拉曼光谱对LiFePO4/C正极材料包覆碳结构的研究 自1997年橄榄石型结构的磷酸铁锂首次被Goodenough小组发现可作为锂离子电池正极材料以来,以其丰富的原料、低廉的价格、安全性高且对环境友好以及较高的理论比容量等优点,迅速得到了全世界动力电池研究者的关注。然而,磷酸铁离子较低的电导率和锂离子扩散能力削弱了其倍率充放电性能,直接制约了它的大规模应用。因此,如何提何磷酸铁离子正极材料的电子和离子导电性成为主要研究方向之一。作为一种有效的改进手段,利用导电性较好且价格低廉的碳来对磷酸铁离子颗粒进行包覆从而提高其表面的电导率并减小其颗粒尺寸被广泛使用。 为了对磷酸铁离子/C表面的包覆碳的导电性进行深入的研究,Doeff等首次引入了在碳材料研究领域被广泛使用的拉曼光谱检测手段,考察了表面碳层的石墨化程度,已经有很多文献报道了在无定形碳的拉曼光谱散射信号中......阅读全文

激光拉曼光谱对LiFePO4/C正极材料包覆碳结构的研究

激光拉曼光谱对LiFePO4/C正极材料包覆碳结构的研究     自1997年橄榄石型结构的磷酸铁锂首次被Goodenough小组发现可作为锂离子电池正极材料以来,以其丰富的原料、低廉的价格、安全性高且对环境友好以及较高的理论比容量等优点,迅速得到了全世界动力电池研究者的关注。然而,磷酸铁离

激光拉曼光谱对LiFePO4/C正极材料包覆碳结构的研究

自1997年橄榄石型结构的磷酸铁锂首次被Goodenough小组发现可作为锂离子电池正极材料以来,以其丰富的原料、低廉的价格、安全性高且对环境友好以及较高的理论比容量等优点,迅速得到了全世界动力电池研究者的关注。然而,磷酸铁离子较低的电导率和锂离子扩散能力削弱了其倍率充放电性能,直接制约了它的大规模

锂离子电池正极材料LiFePO4和LiMn2O4的表面结构

随着人口的日益增加及有限的地球资源,迫使人们提高对资源的利用率。应用充电电池就是有效的途径之一,从而推动了锂二次电池的研究和发展。80年代末,人们的注意力主要集中在以金属锂及其合金为负极的锂二次电池体系。但是锂在充电的时候,由于金属锂表面的位点分布不均匀,从而造成锂不均匀沉积。该不均匀沉积导致锂在一

绿松石的激光拉曼光谱研究

摘 要 对湖北、安徽地区绿松石进行了激光拉曼光谱测试分析。结果表明, 绿松石中H2O , OH - 及PO3 -4的基团振动是导致其激光拉曼光谱形成的主要原因。3 510~3 440 cm- 1 的谱峰是由ν(OH) 伸缩振动所致,其中ν(OH) 振动导致的强拉曼特征谱峰在3 470 cm- 1附近

激光拉曼光谱仪对乙酰氨基酚拉曼光谱检测

目前,药品的安全性问题已经成为了人们时刻关注的焦点,保证药品质量对保障广大人民用药的安全、有效和维护人民身体健康有着重要的意义。传统的药物分析法主要有色谱法、容量分析法、光谱分析法等,这些方法的共同缺点是样品前处理复杂、耗时耗试剂、有机试剂污染等。因此,研究一种操作简洁、快速准确且无损伤的鉴别手段已

激光拉曼光谱仪对乙酰氨基酚拉曼光谱检测

原理对乙酰氨基酚(acetaminophen,药物名扑热息痛,简称APAP),是一种解热镇痛药物,其解热作用持久而缓慢,有良好的耐受性。但是,若过量服用则会导致面色苍白、恶心、呕吐、厌食[4]和腹痛等症状,严重者可致肝昏迷及死亡。在美国,羟考酮和对乙酰氨基酚组成固定复方制剂的药物[1],最常见的固定

锂电池LiFePO4正极材料的介绍

  LiFePO4正极材料是一类新型的锂离子电池用正极材料。由于铁资源丰富、价格低廉并且无毒,因此LiFePO4是一种具有良好发展前景的锂离子电池正极材料。  LiFePO4属于橄榄石型结构,空间群为Pnmb。此结构中Fe3+/Fe2+相对于金属锂的电压为3.4V,理论比容量170mAh/g,并且L

激光拉曼光谱定义

拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差和化合物振动频率、转动频率的关系的分析方法。 与红外光谱类似,拉曼光谱是一种振动光谱技术。所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐。定义:拉曼光谱法是研究化合物分子受

激光拉曼光谱原理

   拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差和化合物振动频率、转动频率的关系的分析方法。 与红外光谱类似,拉曼光谱是一种振动光谱技术。所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐。    激光拉曼光谱原理:

LiFePO4正极材料的性能特点

LiFePO4正极材料LiFePO4正极材料是一类新型的锂离子电池用正极材料。由于铁资源丰富、价格低廉并且无毒,因此LiFePO4是一种具有良好发展前景的锂离子电池正极材料。LiFePO4属于橄榄石型结构,空间群为Pnmb。此结构中Fe3+/Fe2+相对于金属锂的电压为3.4V,理论比容量170mA

高压下石英的激光拉曼光谱研究

摘 要 在高压实验中,石英的相变被广泛作为实验仪器压力校正的标准,而在压力较低的情况下,石英通常还被用作压力指示剂,用来指示金刚石压腔中的压力。Christian等曾经论述了石英的拉曼特征峰的漂移小于20cm-1时,其漂移量与压力的关系式。为了扩大关系式的适用范围,笔者利用金刚石压腔,以目前广泛使用

脱脂对淀粉结构的拉曼光谱影响

  史苗苗,李丹,闫溢哲,刘延奇  郑州轻工业学院食品与生物工程学院(郑州 450002)  摘要为了研究脱脂对不同淀粉结构变化规律, 对马铃薯淀粉、红薯淀粉、玉米淀粉进行脱脂处理, 使用拉曼光 谱仪检测并分析其结构变化规律。结果表明, 与原淀粉相比, 脱脂处理除去了淀粉中的荧光性杂质, 三种淀粉的

激光拉曼光谱的原理

一定波长的电磁波作用于被研究物质的分子,引起分子相应能级的跃迁,产生分子吸收光谱。引起分子电子能级跃迁的光谱称电子吸收光谱,其波长位于紫外~可见光区,故称紫外-可见光谱。电子能级跃迁的同时伴有振动能级和转动能级的跃迁。引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。拉曼散

激光拉曼光谱的原理

一定波长的电磁波作用于被研究物质的分子,引起分子相应能级的跃迁,产生分子吸收光谱。引起分子电子能级跃迁的光谱称电子吸收光谱,其波长位于紫外~可见光区,故称紫外-可见光谱。电子能级跃迁的同时伴有振动能级和转动能级的跃迁。引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。拉曼散

激光拉曼光谱仪的原理结构介绍

  用可见激光(也有用紫外激光或近红外激光进行检测)来检测处于红外区的分子的振动和转动能量,它是 一种间接的检测方法:把红外区的信息变到可见光区,并通过差频(即拉曼位移)的方法来检测  组成:激光光源:He-Ne激光器,波长632.8nm;Ar激光器,波长514.5 nm,488.0nm;散射强度∝

激光拉曼光谱仪的主要部件结构

  激光拉曼光谱仪的主要部件有:激光光源、样品池、单色器、光电检测器、记录仪和计算机。  激光光源:多用连续式气体激发器,有主要波长为632.8nm的He-Ne激光器和主要波长为514.5nm和488.0nm的Ar离子激光器。  样品池:常用微量毛细管以及常量的液体池、气体池和压片样品架等。  单色

超全面锂电材料常用表征技术及经典应用

  在锂离子电池发展的过程当中,我们希望获得大量有用的信息来帮助我们对材料和器件进行数据分析,以得知其各方面的性能。目前,锂离子电池材料和器件常用到的研究方法主要有表征方法和电化学测量。  电化学测试主要分为三个部分:(1)充放电测试,主要看电池充放电性能和倍率等;(2)循环伏安,主要是看电池的充放

蔬菜和水果的显微激光拉曼光谱研究

摘 要 采用显微激光拉曼光谱技术, 研究测定了未经任何处理和经过清洁处理的多种蔬菜和水果表面的拉曼光谱。结果表明不同样品的表面拉曼光谱具有明显的胡萝卜素特征峰, 这一相似性为进一步研究农药残留的识别提供了方便; 也有一些样品出现胡萝卜素以外的其他拉曼光谱峰, 为以后详细分析蔬菜和水果中各种有效营养成

激光拉曼光谱仪

激光拉曼光谱仪是一个集合了激光光谱学、精密机械和微电子系统的综合测量体系。其最终结果是获得散射介质在一定方向上具有一定偏振态的散射光强随频率分布的谱图。 激光拉曼光谱仪分析是一种非破坏性的微区分析手段,液体、粉末及各种固体样品均不需特殊处理即可用于拉曼光谱的测定。拉曼光谱可以单独,或与其他技术(如X

激光拉曼光谱法

拉曼光谱能够准确地测定水合物中不同的笼中的气体分子的拉曼振动强度,且拉曼强度与分子的数量成正比。由于水合物中不同类型的笼子的大小不同,气体分子与组成笼子的水分子之间的作用力不同,故在不同笼中的分子的拉曼位移是不同的。由于I型水合物的大笼(51262)数量是小笼(512)的3倍,Ⅱ型水合物的大笼(51

激光拉曼光谱法

拉曼光谱能够准确地测定水合物中不同的笼中的气体分子的拉曼振动强度,且拉曼强度与分子的数量成正比。由于水合物中不同类型的笼子的大小不同,气体分子与组成笼子的水分子之间的作用力不同,故在不同笼中的分子的拉曼位移是不同的。由于I型水合物的大笼(51262)数量是小笼(512)的3倍,Ⅱ型水合物的大笼(51

拉曼光谱扫描电镜联用实现对碳材料的快检分析(四)

纳米金刚石与单壁碳纳米管复合:一些先进材料或者新材料都是通过将几种具有优异性能的材料复合而成,这其中就包括由不同的碳的同素异形体复合制备而来的材料。这种材料只由碳元素组成,因此,只利用扫描电镜技术很难检测出其质量的好坏以及在制备过程中引起的结构损坏等。图4展示了对纳米金刚石薄膜沉积在单壁碳纳米管上形

拉曼光谱扫描电镜联用实现对碳材料的快检分析-(一)

简介:碳材料通常都具有一些特殊的性质,这些性质使得它们在许多工业领域内都具有广泛的应用。例如石墨烯、石墨、金刚石等就是几种由碳元素组成,互为同素异形体的碳材料。这些碳材料都具有强度高、轻量化、导电能力强、耐热性好等特点。并且它们都是由碳元素组成,彼此以碳-碳键连接。这种特点使得碳材料极其适合采用拉曼

拉曼光谱扫描电镜联用实现对碳材料的快检分析-(六)

富勒烯:富勒烯,又称为巴基球,是一种仅含碳原子的球形结构。其中参与球形的碳原子数量决定了其尺寸和特性。富勒烯目前主要应用在药物学中的基因和药物输送介质方面以及在医用科学领域内作为X光和核磁共振成像中的造影剂使用等。由于尺寸原因,富勒烯能够利用扫描电镜进行观察;例如直径为1纳米的富勒烯通过光学显微镜难

拉曼光谱扫描电镜联用实现对碳材料的快检分析-(五)

石墨:石墨属于另一种碳的同素异形体,本质上是由多层石墨烯堆叠而成。石墨材料的拉曼光谱图与多层石墨烯类似,G峰占主导地位;但是通过改变形状,G’峰能够变得高度复杂。虽然石墨已经广泛用于润滑剂、铅笔等方面,但人们仍然在不断探索它的新应用。例如,通过将石墨与ZnO纳米颗粒混合可以制备出一种新型消毒介质。利

拉曼光谱扫描电镜联用实现对碳材料的快检分析-(二)

金刚石:金刚石材料具有许多优异的特性,例如超高的硬度与刚度,极好的导热性,与大多数化学试剂不会发生化学反应等。将金刚石以薄膜的形式沉积到其他材料上能够有效提高其他材料的综合性能。金刚石晶体中只含有四面体SP3杂化的碳碳键,因此其拉曼光谱中只在大约1332 cm-1处出现拉曼峰。但是在纳米金刚石的

拉曼光谱扫描电镜联用实现对碳材料的快检分析(三)

碳纳米管:碳纳米管材料具有优异的机械性能、电性能以及光学性能等,这些优异的性能使得碳纳米管在许多领域都具有较大的应用潜力,例如用于电子显示器、太阳能电池、存储器、导电复合材料、储氢材料、燃料电池以及超级电容器等方面。这种材料呈圆柱形管状(SP2杂化的碳原子组成)。碳纳米管可以看作是由二维平面材料石墨

激光拉曼光谱仪鉴别物质的分析结构

喇曼效应的机制和荧光现象不同,并不吸收激发光,因此不能用实际的上能级来解释,玻恩和黄昆用虚的上能级概念说明了喇曼效应。下图是说明喇曼效应的一个 简化的能级图 。 设散射物分子原来处于基电子态,振动能级如图所示。当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态

锂电池材料硅酸铁锂的改性包覆碳材料介绍

  由于本征电导率和离子扩散速率很低,纯Li2FeSiO4材料几乎没有电化学活性。碳包覆可提高材料的导电性和电化学性能,包覆的碳源分为两种:  ①无机碳源,主要是一些碳的单质,如碳凝胶、乙炔黑或CNT;  ②有机碳源,依靠有机物在惰性环境下分解形成碳的包覆层,一般又分为小分子有机物(如柠檬酸、蔗糖、

高曲率多层纳米结构包覆过渡金属氮碳材料用于氧电催化

    全文速览  近日,陕西师范大学郑浩铨教授、林海平教授和曹睿教授合作,设计制备了一种新型高曲率多层弯曲结构(也称为洋葱碳结构,onion-like carbon, OLC)纳米球包覆Co-N-C(OLC/Co-N-C)材料,如下图1所示。与20%Pt/C+RuO2复合贵金属催化剂相比,OLC/