光电探测器的分类和比较

光电探测器是指利用辐射引起被照射材料电导率改变的物理现象的原理而制成的器件,其在军事和国民经济的各个领域有广泛用途。光电探测器的分类: 光电探测器分为光电二极管、雪崩光电管、四象限探测器、位敏探测器、波长感应探测器。1. 光电二极管(PIN):应用于一般通用场合。针对特殊应用,可以增加探测器信号放大和探测器前置滤光片。2. 雪崩光电管(APD):主要用于微弱信号场合,同时具备快速响应能力,可以提供各种尺寸和封装类型。3. 四象限探测器(Quadrant):由一个四激活区域的芯片组成,主要应用于位置传感。4. 位敏探测器(PSD):入射光能量转换为位置相对的连续电流输出,位置信号是相对于入射光的“光学中心”。5. 波长敏感探测器(WS):用于检测单色光波长或复合光的峰值波长,光谱分辨率可达0.01nm。应用范围:安全防护,激光测距,工业控制,分析仪器,军工航天,医疗设备,光通讯。各种光电探测器的性能比较: 在动......阅读全文

光电探测器的分类和比较

光电探测器是指利用辐射引起被照射材料电导率改变的物理现象的原理而制成的器件,其在军事和国民经济的各个领域有广泛用途。光电探测器的分类: 光电探测器分为光电二极管、雪崩光电管、四象限探测器、位敏探测器、波长感应探测器。1. 光电二极管(PIN):应用于一般通用场合。针对特殊应用,可以增加探测器信号放大

光电探测器的分类和应用

  分类  光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。  应用  光电探测器件的应用选择,实际上是应用时的一些事项或要点。在很多要求不太严格的应用中,可采用任何一种光电探测器件。不过在某些情况下

光电探测器的分类

光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。

光电探测器的分类

  光电探测器是指利用辐射引起被照射材料电导率改变的物理现象的原理而制成的器件,其在军事和国民经济的各个领域有广泛用途。   光电探测器的分类:   光电探测器分为光电二极管、雪崩光电管、四象限探测器、位敏探测器、波长感应探测器。   1、 光电二极管(PIN):应用于一般通用场合。针对特殊应

光电导探测器的分类

可见光波段的光电导探测器CdS、CdSe、CdTe 的响应波段都在可见光或近红外区域,通常称为光敏电阻。它们具有很宽的禁带宽度(远大于1电子伏),可以在室温下工作,因此器件结构比较简单,一般采用半密封式的胶木外壳,前面加一透光窗口,后面引出两根管脚作为电极。高温、高湿环境应用的光电导探测器可采用金属

光电探测器的原理和性能分析

光电探测器是指由辐射引起被照射材料电导率改变的一种物理现象。光电探测器在军事和国民经济的各个领域有广泛用途。 光电探测器的工作原理: 光电探测器是把光辐射能量转换成立一种便于测量的物理量的器件。大多数光探测器都是把光辐射量转换成电量来实现对光辐射的探测的。光电探测器是光功率计的核心器件,其性能直接影

光电探测器的概述

  光电探测器在光通信系统中实现将光转变成电的作用,这主要是基于半导体材料的光生伏特效应,所谓的光生伏特效应是指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。(光电导效应是指在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化的象。即当光照射到光电导体

光电探测器简介

  光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的技术要求

  为了提高传输效率并且无畸变地变换光电信号,光电探测器不仅要和被测信号、光学系统相匹配,而且要和后续的电子线路在特性和工作参数上相匹配,使每个相互连接的器件都处于最佳的工作状态。现将光电探测器件的应用选择要点归纳如下:  光电探测器必须和辐射信号源及光学系统在光谱特性上相匹配。如果测量波长是紫外波

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的主要应用

光电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的主要应用

光电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的发展历史

  1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏

alphalas-光电探测器介绍

  alphalas 光电探测器属于光线传感器的一种,它常用于摄像头和其他成像设备中。它们可以感知称为“光子”的基本粒子的图案,并通过这些图案创造出图像。不同的alphalas 光电探测器用于感知光谱的不同部分。例如,夜视眼镜中使用的光电探测器就是用于感知肉眼不可见的热辐射。还有一些光电探测

什么是光电探测器

电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波

光电探测器工作原理

纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质(即其他的材料,比如 锗 等)然后

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

什么是光电探测器

电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波

准稳态光电导衰减法和微波光电导衰减法的比较

  QSSPC方法优越于其他测试寿命方法的一个重要之处在于它能够在大范围光强变化区间内对过剩载流子进行绝对测量,同时可以结合 SRH模型,得出各种复合寿命,如体内缺陷复合中心引起的少子复合寿命、表面复合速度等随着载流子浓度的变化关系。  MWPCD方法测试的信号是一个微分信号,而QSSPC方法能够测

安装alphalas光电探测器的规范

    alphalas光电探测器在生物化学分析、医疗设备、工业自动化、高速光通信等诸多领域都得到了广泛的应用,能够保证达到要求的速度进行工作。下面小编就给大家说说安装alphalas光电探测器的规范。    1、alphalas光电探测器选点应选择阀门、管道接口、出气口或易泄漏处附近方圆1米的范围

光电导探测器的工作原理

效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为λc=hc/Eg=1.24/Eg (μm)

光电探测器的基本工作机理

  光电探测器的基本工作机理包括三个过程:  (1)光生载流子在光照下产生;  (2)载流子扩散或漂移形成电流;  (3)光电流在放大电路中放大并转换为电压信号。当探测器表面有光照射时,如果材料禁带宽度小于入射光光子的能量即Eg

光电探测器的相对优点介绍

  它与工作在同样波段的Ge:Hg探测器相比有如下优点:  工作温度高(高于77K),使用方便,而Ge:Hg工作温度为38K;本征吸收系数大,样品尺寸小;易于制造多元器件。表1和表2分别列出部分半导体材料的Eg、Ei和λc值。  通常,凡禁带宽度或杂质离化能合适的半导体材料都具有光电效应。但是制造实

光电探测器的工作原理简介

  光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。  光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一