光电探测器的发展历史

1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏的Ge、Si掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(锗掺金)和Ge:Hg光电导探测器。60年代末以后,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。 工作原理和特性 光电导效应是内光电效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为 λc=hc/Eg=1.24/......阅读全文

光电探测器的发展历史

  1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏

半导体探测器的发展历史

  半导体探测器的前身可以认为是晶体计数器 。早在1926年就有人发现某些固体电介质在核辐射下产生电导现象。后来,相继出现了氯化银、金刚石等晶体计数器。但是,由于无法克服晶体的极化效应问题,迄今为止只有金刚石探测器可以达到实用水平。半导体探测器发现较晚,1949年开始有人用α 粒子照射锗半导体点接触

光电池简介和发展历史

  光电池(photovoltaic cell)又名太阳能电池,是一种在光的照射下产生电动势的半导体元件,能够直接把太阳光转变成电。光电池作为能源广泛应用在人造地球卫星、灯塔、无人气象站等领域。  发展历史  1839年,安托石-贝克雷尔制造出了最早的光电池。贝克雷尔电池是一个圆柱体,内装硝酸铅溶液

近红外光电探测器的发展与应用

1982 年 4 月— 6 月,英国和阿根廷之间爆发了马尔维纳斯群岛战争。4 月 13 日夜间,英国攻击阿根廷据守的最大据点斯坦利港。当时3000名英军的所有枪支、火炮都配备有红外夜视仪,能够在黑夜中清楚地发现阿根廷军目标。而阿根廷军队缺乏夜视装备,不能有效地发现英军目标,处境十分被动。最终,英国军

光电探测器的分类

光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。

光电探测器的概述

  光电探测器在光通信系统中实现将光转变成电的作用,这主要是基于半导体材料的光生伏特效应,所谓的光生伏特效应是指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。(光电导效应是指在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化的象。即当光照射到光电导体

光电探测器的分类

  光电探测器是指利用辐射引起被照射材料电导率改变的物理现象的原理而制成的器件,其在军事和国民经济的各个领域有广泛用途。   光电探测器的分类:   光电探测器分为光电二极管、雪崩光电管、四象限探测器、位敏探测器、波长感应探测器。   1、 光电二极管(PIN):应用于一般通用场合。针对特殊应

光电探测器简介

  光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电探测器的工作原理

光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放

光电导探测器的分类

可见光波段的光电导探测器CdS、CdSe、CdTe 的响应波段都在可见光或近红外区域,通常称为光敏电阻。它们具有很宽的禁带宽度(远大于1电子伏),可以在室温下工作,因此器件结构比较简单,一般采用半密封式的胶木外壳,前面加一透光窗口,后面引出两根管脚作为电极。高温、高湿环境应用的光电导探测器可采用金属

光电探测器的技术要求

  为了提高传输效率并且无畸变地变换光电信号,光电探测器不仅要和被测信号、光学系统相匹配,而且要和后续的电子线路在特性和工作参数上相匹配,使每个相互连接的器件都处于最佳的工作状态。现将光电探测器件的应用选择要点归纳如下:  光电探测器必须和辐射信号源及光学系统在光谱特性上相匹配。如果测量波长是紫外波

光电探测器的主要应用

光电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外

光电探测器的主要应用

光电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外

什么是光电探测器

电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波

什么是光电探测器

电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

光电探测器工作原理

看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质

alphalas-光电探测器介绍

  alphalas 光电探测器属于光线传感器的一种,它常用于摄像头和其他成像设备中。它们可以感知称为“光子”的基本粒子的图案,并通过这些图案创造出图像。不同的alphalas 光电探测器用于感知光谱的不同部分。例如,夜视眼镜中使用的光电探测器就是用于感知肉眼不可见的热辐射。还有一些光电探测

光电探测器工作原理

纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质(即其他的材料,比如 锗 等)然后

辐射探测器的历史简介

  能给出电信号的辐射探测器已不下百余种。最常用的主要有气体电离探测器、半导体探测器和闪烁探测器三大类。早在1908年,气体电离探测器就已问世。但直到1931年脉冲计数器出现后才解决了快速计数问题。1947年,闪烁计数器的出现,由于其密度远大于气体而大大提高了对粒子的探测效率。最显著的是碘化钠(铊)

可调谐红外双波段光电探测器,助力多光谱探测发展

  红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。  据麦姆斯咨询报道,近日,

光电探测器的暗电流危害

暗电流(dark current), 也称无照电流,指在没有光照射的状态下,在太阳电池、光敏二极管、光导电元件、光电管等的受光元件中流动的电流。[1]  在光电技术、太阳能、传感器、生物物理学等领域都有相关定义。生理学方面的暗电流,是指在无光照时视网膜视杆细胞的外段膜上有相当数量的Na离子通道处于开

光电导探测器的工作原理

效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为λc=hc/Eg=1.24/Eg (μm)

安装alphalas光电探测器的规范

    alphalas光电探测器在生物化学分析、医疗设备、工业自动化、高速光通信等诸多领域都得到了广泛的应用,能够保证达到要求的速度进行工作。下面小编就给大家说说安装alphalas光电探测器的规范。    1、alphalas光电探测器选点应选择阀门、管道接口、出气口或易泄漏处附近方圆1米的范围

光电探测器的工作原理简介

  光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。  光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一