Antpedia LOGO WIKI资讯

傅立叶近红外光谱可鉴别食用菌

红外谱图反映物质组成成分、相对含量及分子结构等信息,它能够从化学本质上反映物质的不同。红外光谱技术对样品需要量少、样品无需进行提取分离、操作相对简便易行,自1950年此技术问世以来,欧美各国的学者相继开展应用红外光谱技术对动物和人体致病细菌及大肠微生物进行鉴定的研究,取得了较大的进展。随着红外光谱技术和化学计量技术的发展,近年来红外光谱技术广泛应用于肿瘤、中药材的鉴别研究,而汪虹[1]研究了灵芝、大球盖菇和4个香菇菌株的傅立叶变换红外光谱,试验结果表明,3种食用菌具有各自的特征FTIR谱图,可用傅立叶变换红外光谱可鉴别。 全自动进样傅立叶变换近红外分析仪InfraLUM® FT -12型和InfraLUM® FT -40(只适用于谷物)型傅立叶近红外光谱(见图1)是质量品质控制的最经济有效的仪器,能快速的检测出食用菌中的有效成分,具有自己的定标软件,可以自己建立定标模型,除此之外,12型号的仪器......阅读全文

傅立叶近红外光谱可鉴别食用菌

红外谱图反映物质组成成分、相对含量及分子结构等信息,它能够从化学本质上反映物质的不同。红外光谱技术对样品需要量少、样品无需进行提取分离、操作相对简便易行,自1950年此技术问世以来,欧美各国的学者相继开展应用红外光谱技术对动物和人体致病细菌及大肠微生物进行鉴定的研究,取得了较大的进展。随着红外光谱技

傅立叶变换红外光谱

1.基本原理红外光谱又称为分子振动转动光谱,是一种分子吸收光谱。当一束具有连续波长的红外光通过物质时,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级。因此,物质分子吸收红外辐射发生振动和转动能级跃迁的波长处就出现红外

傅立叶近红外光谱仪的竞争优势

傅立叶近红外光谱仪如今已经广泛应用于各个行业的质量控制,如医药,食品,农业和化工板块。这项技术可以替代那些传统的费时费力的湿化学检测和色谱检测。 傅立叶近红外具有无损,不需要制备样品和无需使用危险化学品的特点,可以快速准确的用于定量和定性分析。 近红外不仅可以用于原料产品的快速鉴定,还是同时准确提供

什么是傅立叶变换红外光谱?

FTIR指的是傅立叶变换红外,是红外光谱分析的首选方法。 当连续波长的红外光源照射样品时,样品中的分子会吸收或部分某些波长光,没有被吸收的光会到达检测器(称为透射方法)。 将检测器获取透过样品的光模拟信号进行模数转换和傅立叶变换,得到具有样品信息和背景信息的单光束谱,然后用相同的检测方法获取红外光不

分析近红外光谱仪中近红外光谱原理

近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR

分析近红外光谱仪中近红外光谱原理

  近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NI

傅立叶红外光谱仪的特点

FT-IR的特点:(1)扫描速度快     扫描时间内同时测定所有频率的信息(2)具有很高的分辨率   (3)灵敏度高         不用狭缝和单色器,更高的能量通过

药物鉴别法--红外光谱鉴别法

红外光谱鉴别法是一种专属性很强、应用广泛的方法,主要用于组分单一、结构明确的原料药,特别是结构复杂、用其他常用方法不易区分的药物,并且适用于固体、液体甚至是气体的样品鉴别。应用红外光谱进行鉴别试验时,药典采用标准图谱对照法。在药典规定的条件下测定供试品的图谱,然后与国家药典委员会编订的《药品红外光谱

傅立叶变换近红外光谱仪常见问题解答

1.傅立叶变换近红外光谱仪能为我们烟草行业做什么? 傅立叶变换近红外光谱仪在烟草工业中的应用分为定量分析和定性分析两部分。定量分析主要分析初烤烟、复烤烟和烟丝中的总糖、还原糖、总氮、烟碱、氯、钾、水份和淀粉等,还能分析制丝过程中烟丝的PH值和挥发碱等。定性分析现在主要用于产地鉴别、真假烟的

傅立叶变换红外光谱仪原理

傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入红外光谱仪原理图到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。