Antpedia LOGO WIKI资讯

功能分子体系中较高Kondo温度的物理机制研究取得进展

在原子尺度上对单个原子/分子实现精确操纵以及对其物性实现可控调制一直是凝聚态物理及其应用领域中最重要的前沿研究之一,相关研究具有极强的挑战性。多年来,中国科学院物理研究所/北京凝聚态物理国家研究中心高鸿钧院士领导的研究团队在这个领域开展了系统的研究和探索,取得了一系列重要的研究成果。图1. 分子吸附在Au表面的构型、自组装结构以及最高占据态、最低占据态能级。图2. 4.2 K 和0.4 K下费米面处的dI/dV谱线。图3. 0.4 K下分子随空间位置变化的dI/dV 谱线,以及磁激发和分子振动引入非弹性隧穿谱的示意图。图4. 理论计算得到的分子20 meV以内的振动模式以及其中三个的最高效率(efficient)的声子振动模式示意图。 近期,他们在磁性单原子/分子自旋性质及其调制方面开展了相关的工作。他们以Ru(0001)表面上外延生长大面积、高质量的石墨烯为基底,首次在实验上观测到了单个磁性钴(Co)原子的近藤(Kond......阅读全文

功能分子体系中较高Kondo温度的物理机制研究取得进展

  在原子尺度上对单个原子/分子实现精确操纵以及对其物性实现可控调制一直是凝聚态物理及其应用领域中最重要的前沿研究之一,相关研究具有极强的挑战性。多年来,中国科学院物理研究所/北京凝聚态物理国家研究中心高鸿钧院士领导的研究团队在这个领域开展了系统的研究和探索,取得了一系列重要的研究成果。图1. 分子

物理所Kondo金属与亚铁磁绝缘体研究取得新进展

  最近,中科院物理研究所/北京凝聚态物理国家实验室刘伍明研究组在几何阻挫系统中的量子相变研究中取得进展。他们利用原胞动力学平均场方法结合连续时间蒙特卡洛方法,研究了在非均匀性三角kagome格子中金属-绝缘体相变与磁性相变,获得了三角kagome格子随相互作用、温度、非均匀性变化的详细相

PRL-高鸿钧谢心澄等-单分子自旋态量子调控研究

量子调控研究是国家中长期科技发展战略规划的重要内容。近日,中科院物理所纳米物理与器件实验室高鸿钧研究组与谢心澄研究员及英国利物浦大学Werner A. Hofer教授合作在单分子自旋态的量子调控研究中取得新进展。他们发现在酞菁铁分子Kondo效应中由于分子中心铁原子在金属表面的吸附位置不同对Kond

武汉物数所等发现磁性原子对拓扑电子态的影响

  拓扑材料因其新奇的表面态引起了人们广泛的关注。这种受时间反演对称性保护的相对论性拓扑电子态具有自旋手征性,因此在自旋电子学和量子计算方面有着巨大的应用前景。目前,许多实验和理论研究表明拓扑电子态在非磁散射下表面的时间反演对称性仍然保持。但磁散射下对称性是否发生破缺从而破坏拓扑材料表面态的性质仍存

单分子器件电子输运通道调控及其巨磁阻效应研究获进展

  信息技术的成功发展离不开电子学器件的小型化。对器件小型化的追求促使了人们对单分子器件的研究和理解,以求最终实现以单分子为基本单元构筑电路。单分子器件已经成了在纳米尺度研究各种有趣物理现象和机制的平台。在原子尺度上对单个原子/分子的量子态实现精确操纵以及对其物性实现可控调制一直是凝聚态物理及其应用

物理所国际首次实现朗德g因子原子尺度上的空间分辨

  理解与调控纳米量子结构的自旋特性是自旋电子学领域前沿研究课题。例如,原子的朗德g因子,它反映了原子所在空间环境的局域精细自旋相互作用,可以为分子自旋态的调控及其在未来自旋器件中的应用提供重要信息。对于分子体系,通常的技术手段测得的g因子是大量分子的平均信息,无法得到单分子内部的在单原子尺度上g因

氯化锂沉淀法去除质粒DNA制备物中的小片段核酸

氯化锂沉淀法去除质粒制备物中小片段核酸(包括 DNA 和 RNA ) 的原理是基于两种核酸在氯化锂溶液中的溶解度有所不同。氯化锂是强脱水剂,可降低 RNA 的溶解性 ( Hearst and Vinograd 1961a, b),并剥离染色质上的蛋白质(Kondo 1979)。因此,质粒粗提物中的高

氯化锂沉淀法去除质粒DNA制备物中的小片段核酸

氯化锂沉淀法去除质粒制备物中小片段核酸(包括 DNA 和 RNA ) 的原理是基于两种核酸在氯化锂溶液中的溶解度有所不同。氯化锂是强脱水剂,可降低 RNA 的溶解性 ( Hearst and Vinograd 1961a, b),并剥离染色质上的蛋白质(Kondo 1979)。因此,质粒粗提物中的高

物理所等揭示Ce膜中存在的轨道选择Mott物理

  单质金属Ce中的γ-α相变伴随着4f电子的局域-巡游转变,其机理长期以来一直存在争议:一种图像认为相变源于4f电子自身的Mott转变,另一种则归因为4f电子与spd电子间Kondo杂化强度的变化。由于Ce元素化学活性较强,高质量的薄膜生长与谱学测量存在难度。  近期,中国科学院物理研究所/北京凝

利用改进的CRISPR/Cas9系统高效和特异性地实现单碱基突变

  在一项新的研究中,利用一种引入DNA单个核苷酸变化的脱氨酶,来自日本神户大学的研究人员构建出一种改进的CRISPR/Cas9工具,从而避免产生有害的双链断裂,使得利用CRISPR/Cas9技术引入的附带突变最小化,而且也不需要加入DNA模板。相关研究结果于2016年8月4日在线发表在Scienc