荧光量子效率

荧光量子效率又称荧光量子产额(quantumyieldoffluorescence)和荧光效率。单位时间(秒)内,发射二次辐射荧光的光子数与吸收激发光初级辐射光子数之比值。中文名荧光量子效率外文名fluorescence quantum efficiency内容概述荧光量子产额和荧光效率φf物质吸收的光能转变成荧光的本领基本内容英文名称: fluorescence quantum efficiency简要概述内容:: 又称荧光量子产额(quantum yield of fluorescence)和荧光效率。单位时间(秒)内,发射二次辐射荧光的光子数与吸收激发光初级辐射光子数之比值。荧光量子效率 φf 在荧光物质诸性能之中是一个最基本而重要的参数.它表示物质将吸收的光能转变成荧光的本领。φf = 发射的光量子数/吸收的光量子数φf =发射荧光的分子数/被激发的分子总数φf 值的大小是与物质的化学结构紧密相关的.任何影响以至于改变物......阅读全文

荧光量子效率

荧光量子效率又称荧光量子产额(quantumyieldoffluorescence)和荧光效率。单位时间(秒)内,发射二次辐射荧光的光子数与吸收激发光初级辐射光子数之比值。中文名荧光量子效率外文名fluorescence quantum efficiency内容概述荧光量子产额和荧光效率φf物质吸收

叶绿素荧光量子产量

  细胞内的叶绿素分子通过直接吸收光量子或间接通过捕光色素吸收光量子得到能量后,从基态(低能态)跃迁到激发态(高能态)。由于波长越短能量越高,故叶绿素分子吸收红光后,电子跃迁到最低激发态;吸收蓝光后,电子跃迁到比吸收红光更高的能级(较高激发态)。处于较高激发态的叶绿素分子很不稳定,在几百飞秒(fs,

分子荧光量子产率

荧光量子产率(Quantum yield):荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。由于激发态分子的衰变过程包含辐射跃迁和非辐射跃迁,故荧光量子产率可表示为                            ɸf  =  kf / (kf + ΣK)  

光致发光和荧光量子效率计算

原理所谓光致发光(Photoluminescence简称PL),是指物体依赖外界光源 进行照射,从而获得能量,产生激发导致发光的现象。也指物质吸收光子(或电磁波)后重新辐射出光子(或电磁波)的过程。光致发光过程包括荧光发光和磷光发光。从量子力学理论上,这一过程可以描述为物质吸收光子跃迁到

荧光量子产率原理及应用

基本概念及特征量子点:(Quantum dot,QD)又称半导体纳米晶,是导带电子、价带空穴及激子在三个空间方向上受束缚的半导体纳米结构,其三维尺寸通常在2-10nm范围内,呈近似球形,市场上使用的量子点材料多为核壳结构。 量子点材料:分为元素半导体量子点、化合物半导体量子点、异质结量子

发现水蒸气环境下硅量子点荧光机制

  中科院上海应用物理研究所科研人员运用含时密度泛函理论,阐述了水蒸气环境中硅量子点的奇异荧光机制。相关成果日前发表于《物理化学快报》杂志。  水环境对硅量子点的光学特性有明显影响,但目前水蒸气环境下硅量子点的荧光机制并没有得到足够的认识。  研究人员利用含时密度泛函理论,解释了一个关键问题:在水环

量子产率超过90%荧光标记的最强荧光——藻胆蛋白

藻胆蛋白是源自微藻和蓝细菌的光合作用光捕获蛋白家族。这些蛋白质具有共价连接的线性四吡咯基团,称为藻胆素,其在捕获光能中起关键作用。在微藻和蓝细菌中,由这些藻胆素吸收的能量通过荧光共振能量转移(FRET)有效地转移到叶绿素色素用于光合作用反应。与化学合成荧光染料相比,藻胆蛋白由于其相对高的荧光量子产率

二氯荧光素量子产率的测定实验

实验方法原理荧光分析法在有机电致发光、生物医药、临床诊断等领域得到广泛应用。高性能荧光材料的制备已成为这些领域的研究热点与前沿,而这些荧光材料的荧光量子产率的高低直接影响它们的性能优劣。荧光量子产率(YF)即荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。它的数值在通常情况下总是小

蒽和硫酸奎宁哪个荧光量子效率高

首先这个规律不是完全确定的,大部分荧光物质存在一种聚集引发淬灭的现象。就是说在浓度比较高的情况下激发能量会以由分子间作用力形成超分子结构的形式耗散。因此再较低浓度下测得的荧光量子效率反而更高。

量子点作为荧光离子探针应用的研究进展

1. 引言量子点是一种准零维纳米晶粒,因其三个维度均受到量子限域,从而表现出一些独特的光学性能,如激发波长范围宽、发射波长范围窄且对称、量子产率高、荧光寿命长、光学性能稳定等优点。量子点作为荧光离子探针在离子以及小分子检测领域引起了许多研究人员的关注并且取得了不错的进展。离子和无机小分子与量子点之间

量子点免疫荧光组织化学实验宝典

一、量子点免疫荧光组织化学原理量子点免疫荧光组织化学(Quantum Dots based Immunohistochemistry, QD-IHC)又称量子点免疫荧光细胞化学,是根据抗原—抗体特异性结合的原理,用量子点标记特异性抗体作为探针,检测组织或细胞中抗原性物质的一种技术。量子点免疫荧光组化

二氯荧光素量子产率的测定实验

实验方法原理荧光分析法在有机电致发光、生物医药、临床诊断等领域得到广泛应用。高性能荧光材料的制备已成为这些领域的研究热点与前沿,而这些荧光材料的荧光量子产率的高低直接影响它们的性能优劣。荧光量子产率(YF)即荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。它的数值在通常情况下总是小

理化所在量子点荧光检测研究方面取得新进展

  开发新型、快速、高效检测乳酸脱氢酶(LDH)活性水平的方法可实现对常见的心肌炎、心肌梗塞、肾病、肝癌等疾病的早期诊断和实时调控,具有重要的临床意义。因此,将具有激发范围宽,发射光谱窄,荧光量子产率高,可通过调节尺寸、组成或结构来调节发射峰位,实现多色发光等优异光学特性的量子点用于开

氮掺杂石墨烯量子点在双光子荧光成像研究取得进展

  双光子荧光成像技术具有近红外激发、避免光毒作用和光漂白、自发荧光干扰弱及较深的组织穿透深度等优点,在生物医药领域研究中受到极大关注。开发具有高双光子吸收截面、生物相溶性好的材料作为双光子荧光探针,是活细胞和深层组织成像研究领域的关键和热点。   国家纳米科学中心宫建茹研究组以氧化石墨烯为前驱体

摘掉“量子医学”的量子“高帽”

   量子力学是描写微观世界的一个物理学分支,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学,都是以量子力学为基础。  量子力学同时也给人们提供了新的关于自然界的表述方法和思考方法。在许多现代技术装备中,量子力学的效应起到

量子纠缠是量子电池必不可少的量子资源

  2022年诺贝尔物理学奖让“量子纠缠”再次引发全世界关注。近日,中科院精密测量院科研团队与西北大学研究人员合作,首次证明了量子相干或量子纠缠在量子电池产生可提取功的过程中是必不可少的量子资源。相关研究成果近日发表在《物理评论快报》上。  关于量子电池的研究是近些年来颇受关注的量子科技问题,其中的

量子纠缠是量子电池必不可少的量子资源

  2022年诺贝尔物理学奖让“量子纠缠”再次引发全世界关注。近日,中科院精密测量院科研团队与西北大学研究人员合作,首次证明了量子相干或量子纠缠在量子电池产生可提取功的过程中是必不可少的量子资源。相关研究成果近日发表在《物理评论快报》上。  关于量子电池的研究是近些年来颇受关注的量子科技问题,其中的

量子纠缠是量子电池必不可少的量子资源

原文地址:http://news.sciencenet.cn/htmlnews/2022/10/488378.shtm 中心自旋量子电池图(受访者供图) 2022年诺贝尔物理学奖让“量子纠缠”再次引发全世界关注。近日,中科院精密测量院科研团队与西北大学研究人员合作,首次证明了量子相干或

荧光碳量子点的太赫兹光电特性研究获新进展

近日,中国科学院合肥物质科学研究院固体物理研究所研究员徐文课题组与西南大学合作,利用太赫兹时域光谱(THz TDS)技术,探究荧光碳量子点(CQDs)的光电特性,发现在80-280 K温度范围内,红光荧光量子点(R-CQDs)在0.2-1.2 THz频段为光绝缘体(即对THz光全透),而蓝光荧光量子

荧光碳量子点的太赫兹光电特性研究获新进展

  近日,中国科学院合肥物质科学研究院固体物理研究所研究员徐文课题组与西南大学合作,利用太赫兹时域光谱(THz TDS)技术,探究荧光碳量子点(CQDs)的光电特性,发现在80-280 K温度范围内,红光荧光量子点(R-CQDs)在0.2-1.2 THz频段为光绝缘体(即对THz光全透),而蓝光荧光

纳米金、量子点、荧光二氧化硅的优缺点

由于金可与巯基之间形成很强的Au-S共价键,金纳米粒子可以很好的结合纳米技术和生物检测技术。金纳米粒子在水中形成的分散系俗称胶体金,以胶体金为标记物的免疫金和免疫金染色法,可以单标记或多重标记,并可以进行大分子的定性、定位以至定时量研究,已被广泛应用于医学和生物学的众多领域。人们对胶体金在功能化固体

上海微系统所石墨烯量子点荧光发光机制研究获进展

  近日,中国科学院上海微系统与信息技术研究所纳米材料与器件实验室丁古巧团队在石墨烯量子点制备及荧光机制研究方面取得进展。该工作深化了关于石墨烯量子点发光机理的认知,阐释了多变量体系下机器学习辅助材料制备成果所包含物理内涵。相关研究成果以Precursor Symmetry Triggered Mo

量子幽灵

  一种新发现的被称为"集体诱导透明"(CIT)的现象导致原子组突然停止反射特定频率的光线。CIT是通过将镱原子限制在一个光腔内--基本上是一个微小的光盒--然后用激光轰击它们而发现的。尽管激光的光线会从原子上反弹到一个点上,但随着光线频率的调整,一个透明的窗口出现了,在这个窗口中,光线可以不受阻碍

绝对量子效率是外量子效率吗

不是。1、绝对量子效率亦称量子产额在光合作用中每吸收一个光量子所固定的二氧化碳分子数或释放氧气的分子数,由于所得数值为小数故通常用其道术量子需要量来表示。2、外量子效率是指单位时间内输出发光二极管外的光子数目与注入的载流子数目之比。

基于量子点的单分子荧光示踪技术揭示分子马达的行走...

基于量子点的单分子荧光示踪技术揭示分子马达的行走机制在生物体内,分子马达参与肌肉收缩、胞质运输、DNA转录以及有丝分裂等一系列重要的生命活动。在执行上述功能过程中,分子马达需要借助ATP水解释放的能量,完成在细胞骨架上的特定运行轨迹。因此,关于分子马达沿着细胞骨架的行走机制的研究,对于深刻认识分子马

新型碳量子点荧光探针或将问世-细胞钙离子检测迎利好

  钙离子调节多种重要的细胞功能  钙是维持生物体生命活动的必需元素之一,在骨骼生长、肌肉活动、酸碱平衡、神经活动中起着不可替代的作用。  正常状态下,一位健康成年人体内平均钙含量为1500g,大约占其体重的1.5-2%。绝大部分人体钙存在于骨骼和牙齿中,剩下的部分存在于软组织和体液中。作为通用的第

ACS-Nano:机器学习辅助合成高荧光量子产率碳点

  近年来荧光纳米传感器显示出高灵敏度和选择性检测等各种优势,超过常规电化学方法。然而与荧光纳米传感器相比,碳点(CDs)因其光学传感的多项优势,例如易于功能化,宽带光吸收,出色的光稳定性等,在传感中占有重要地位。目前制造CDs的主要方法是水热法或溶剂热法“自下而上”进行制备。大量研究表明了荧光量子

“脆弱”的量子比特,如何成为量子计算主心骨

近来,有关量子计算的新闻不断刷屏。量子计算机的突破,为我们描绘着更快、更强的未来计算场景。然而,对于大多数人来讲,量子计算机依然是“不明觉厉”的存在。我们可能会发现,表述量子计算机能力水平的一个重要参数是它的量子比特数。无论是我国66比特的可编程超导量子计算原型机“祖冲之二号”,还是近日IBM公司宣

50个量子比特!量子“霸权”时代来临啦!

   在美国电气和电子工程师协会(IEEE)近日召开的计算机未来行业峰会上,IBM人工智能(AI)和量子计算机部门副主席达里奥·吉尔宣布一项里程碑式的进展:IBM已成功建成并测试全球首台50个量子比特的量子计算机原型,向验证量子计算机超越传统超级计算机的“量子霸权”时代迈出了关键一步。公司还将现有的

首个微波量子雷达实现“量子优越性”

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505246.shtm法国国家科学院里昂高等师范学院的科学家最近开发出了首个基于微波的量子雷达,其性能比现有传统雷达高20%,实现了所谓的“量子优越性”。相关研究发表于最新一期《自然·物理学》杂志。