二氯荧光素量子产率的测定实验
实验方法原理荧光分析法在有机电致发光、生物医药、临床诊断等领域得到广泛应用。高性能荧光材料的制备已成为这些领域的研究热点与前沿,而这些荧光材料的荧光量子产率的高低直接影响它们的性能优劣。荧光量子产率(YF)即荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。它的数值在通常情况下总是小于1。YF的数值越大则化合物的荧光越强,而无荧光的物质的荧光量子产率却等于或非常接近于零。荧光量子产率一般采用参比法测定。即在相同激发条件下,分别测定待测荧光试样和已知量子产率的参比荧光标准物质两种稀溶液的积分荧光强度(即校正荧光光谱所包括的面积)以及对一相同激发波长的入射光(紫外-可见光)的吸光度,再将这些值分别代入特定公式进行计算,就可获得待测荧光试样的量子产率:Yu = Ys*Fu/Fs *As/AuYu、Ys -待测物质和参比标准物质的荧光量子产率;Fu、Fs -为待测物质和参比物质的积分荧光强度;Au、As -为待测物质和参......阅读全文
二氯荧光素量子产率的测定实验
实验方法原理荧光分析法在有机电致发光、生物医药、临床诊断等领域得到广泛应用。高性能荧光材料的制备已成为这些领域的研究热点与前沿,而这些荧光材料的荧光量子产率的高低直接影响它们的性能优劣。荧光量子产率(YF)即荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。它的数值在通常情况下总是小
二氯荧光素量子产率的测定实验
实验方法原理荧光分析法在有机电致发光、生物医药、临床诊断等领域得到广泛应用。高性能荧光材料的制备已成为这些领域的研究热点与前沿,而这些荧光材料的荧光量子产率的高低直接影响它们的性能优劣。荧光量子产率(YF)即荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。它的数值在通常情况下总是小
分子荧光光度法测定二氯荧光素
分子荧光光度法测定二氯荧光素实验实验中修改部分一、实验目的:1、(书) 2、掌握荧光分光光度计的结构及基本使用方法 3、熟悉荧光分光光度计的应用二、方法原理:(书)三、仪器和试剂:仪器:Cary/Eclipse荧光分光光度计。该仪器使用氙弧灯作为激发光源。在190
荧光素酶的测定实验
基本方案 实验方法原理 荧光素 4-单氧酶(ATP-水解)提取于萤火虫,Photinus Pyralis。荧光素+ATP+O2→氧和虫荧光素+PPi+H2O+
荧光素酶的测定实验
实验方法原理荧光素 4-单氧酶(ATP-水解)提取于萤火虫,Photinus Pyralis。荧光素+ATP+O2→氧和虫荧光素+PPi+H2O+光光密度 I 是和 Michaelis-Menten 等式相关的式中,H 是 Planck 常量;v 是发射光的频率。当 ATP 浓度非常低([ATP]<
2,7二氯荧光素怎么显色
加入酚。在0.5mol/LH2SO4介质中,Br-和BrO-3反应生成Br2,显色需要加入酚。当加入酚时,用丙酮稀释至200ml,再加30%过氧化氢1。
分子荧光量子产率
荧光量子产率(Quantum yield):荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。由于激发态分子的衰变过程包含辐射跃迁和非辐射跃迁,故荧光量子产率可表示为 ɸf = kf / (kf + ΣK)
多色流式实验荧光素的选择(二)
3. 多色流式细胞检测中荧光素选择的原则1) 根据机器配置选择荧光素了解你使用的流式细胞仪的性能,大多数流式细胞仪有两个或者多个激光器,有五种波长可供选择:紫外(355 nm)、紫色(405 nm)、蓝色(488 nm)、黄色(561 nm)和红色(640 nm)。除了激光器,具体的激光片和检测
荧光素酶的测定
实验方法原理 荧光素 4-单氧酶(ATP-水解)提取于萤火虫,Photinus Pyralis。荧光素+ATP+O2→氧和虫荧光素+PPi+H2O+光光密度 I 是和 Michaelis-Menten 等式相关的式中,H 是 Planck 常量;v 是发射光的频率。当 ATP 浓度非常低([ATP]
荧光量子产率原理及应用
基本概念及特征量子点:(Quantum dot,QD)又称半导体纳米晶,是导带电子、价带空穴及激子在三个空间方向上受束缚的半导体纳米结构,其三维尺寸通常在2-10nm范围内,呈近似球形,市场上使用的量子点材料多为核壳结构。 量子点材料:分为元素半导体量子点、化合物半导体量子点、异质结量子
二乙酸荧光素的概念
二乙酸荧光素别名 FDA,荧光素二乙酸盐,荧光素二乙酸酯3,6-DiacetoxyfluoranDi-O-acetylfluorescein
二乙酸荧光素的用途
用途 FDA可透过细胞膜并作为荧光素积蓄在活细胞内。由于荧光素较BCECF或Calcein的亲水性低,因此荧光素从细胞中渗漏的量也高。FDA也可用于流式细胞仪。荧光素的激发和发射波长分别为488 nm和530 nm。
荧光素钠的含量测定
照高效液相色谱法(通则0512)测定。供试品溶液取本品约25mg,精密称定,置50m1量瓶中,加水溶解并稀释至刻度,摇匀,精密量取2ml,置100ml量瓶中,用水稀释至刻度,摇匀。对照品溶液取荧光素钠对照品约25mg,精密称定,置5oml量瓶中,加水溶解并稀释至刻度,摇匀,精密量取2ml,置00ml
量子产率超过90%荧光标记的最强荧光——藻胆蛋白
藻胆蛋白是源自微藻和蓝细菌的光合作用光捕获蛋白家族。这些蛋白质具有共价连接的线性四吡咯基团,称为藻胆素,其在捕获光能中起关键作用。在微藻和蓝细菌中,由这些藻胆素吸收的能量通过荧光共振能量转移(FRET)有效地转移到叶绿素色素用于光合作用反应。与化学合成荧光染料相比,藻胆蛋白由于其相对高的荧光量子产率
维生素B2-(核黄素)-荧光测定法实验_荧光测定法1
实验方法原理核黄素能形成一种具有黄绿色荧光的黄色溶液。它在稀溶液中,440~500 nm波长下测定的荧光强度与核黄素的浓度成正比。根据其在还原后的荧光差数,可测定核黄素的含量。实验材料核黄素试剂、试剂盒高锰酸钾溶液 荧光红钠 硫代硫酸钠 冰醋酸仪器、耗材荧光分光光度计 玻璃器实验步骤溶液配制:1.
维生素B2-(核黄素)-荧光测定法实验_荧光测定法2
实验方法原理核黄素在pH 4~9 的条件下,用450 nm波长的光激发,可发出波长为520 nm的荧光。在核黄素的含量为0.1~10 μg范围内,荧光的强度,与核黄素浓度成正比,硫代硫酸钠可消除核黄素的荧光性。实验材料核黄素试剂、试剂盒荧光红钠 硫代硫酸钠 盐酸仪器、耗材荧光分光光度计 容量瓶实验步
荧光素大全:荧光素及其衍生物产品汇总(二)
1. 荧光素相关产品 我们提供广泛的荧光素产品选择,包括反应性荧光素和荧光素衍生物,用于标记抗体,核酸和其他生物分子,结合物,指示剂以及用于检测细胞,组织匀浆和溶液中酶活性的底物。 荧光素标准品: 产品名称货号荧光素* CAS 2321-07-5 *1荧光素
二乙酸荧光素的基本信息
中文名二乙酸荧光素外文名Di-O-acetylfluorescein分子式C24H16O7分子量416.38性 状白色晶体粉末,活细胞染色
高氯废水-化学需氧量的测定(二)
化学需氧量 化学需氧量(COD),是指在一定条件下,用强氧化剂处理水样时所消耗氧化剂的量,以氧的毫克/升来表示。化学需氧量反映了水中受还原性物质污染的程度。水中还原性物质包括有机物、亚硝酸盐、亚铁盐、硫化物等。水被有机物污染是很普遍的,因此化学需氧量也作为有机物相对含量指标之一。水样的化学需氧量,可
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣
荧光素酶互补(Luc)实验
【导入】基于荧光素酶(Luciferase)的发光原理,形成了双荧光素酶报告基因检测系统。该系统包括萤火虫荧光素酶(Firefly luciferase)和海参荧光素酶(Renilla luciferase)。两者可与各自的底物发生氧化作用产生生物荧光,产生的荧光值即表示两种酶的表达量多少。图片来源
双荧光素酶实验原理
双荧光素酶实验原理:利用荧光素酶与底物结合发生化学发光反应的特点,把感兴趣的基因转录的调控元件克隆在萤火虫荧光素酶基因(firefly luciferase)的上游,构建成荧光素酶报告质粒。然后转染细胞,适当刺激或处理后裂解细胞,测定荧光素酶活性。通过荧光素酶活性的高低判断性刺前后或不同刺激对感兴趣