Antpedia LOGO WIKI资讯

多光子显微镜成像技术:通过可编程的超连续谱脉冲实...

多光子显微镜成像技术:通过可编程的超连续谱脉冲实现无标记组织病理学传统的组织病理学处理组织包括固定、包埋、切片和染色等过程,会导致所得图像变形伪影且某些生物信息缺失,这对于医生对图像的观察和解释都会造成影响,并且这个过程会耗费大量的时间。对于非线性光学显微镜,通过不同的激发光能实现不同的非线性成像过程,不同的非线性成像过程是由生物样品中不同的内源性生物分子引起的,这就说明不同的激发光能够“人工”的标记各种内源性生物分子,而不需要外源性染色剂或其他荧光剂进行“物理”标记,并且这些非线性成像过程都可以在实现CARS的多模态系统中实现。图1中的三个系统都是比较常见的CARS显微镜系统,这些系统存在两个问题:第一,图中固体激光器直接出射的激光(“红色”光束)打到显微镜系统里,激光器的光束指向随时间和温度可能会漂移,指向不稳定性容易受到日常变化的影响,直接影响显微镜系统的成像,所以需要经常对进入显微镜的光束进行重新对准。图1c中激光器出射......阅读全文

多光子显微镜成像技术:通过可编程的超连续谱脉冲实...

多光子显微镜成像技术:通过可编程的超连续谱脉冲实现无标记组织病理学传统的组织病理学处理组织包括固定、包埋、切片和染色等过程,会导致所得图像变形伪影且某些生物信息缺失,这对于医生对图像的观察和解释都会造成影响,并且这个过程会耗费大量的时间。对于非线性光学显微镜,通过不同的激发光能实现不同的非线性成像过

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜

多光子显微镜成像技术:大视场多区域脑成像技术

为了了解神经回路的功能以及神经元之间的相互作用,需要对不同区域的大量神经元进行活体成像,我们这里介绍两种显微镜技术,分别针对大视场多区域成像和自由活动小鼠的活体成像。从图1可以看出用于视觉处理的神经元分布在直径约3毫米的区域——小鼠初级视觉皮层和多个较高级的视觉区域。当前的商用双光子显微镜系统通常提

多光子显微镜成像技术:多光子显微镜用于体内神经元...

多光子显微镜成像技术:多光子显微镜用于体内神经元成像的多种技术与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整活体大脑深处神经的了解与认识。2019年,Jerome Lecoq等人从大脑深处的神经元成像、大量神经元成像、高

多光子显微镜成像技术:偏振分辨倍频显微镜及其图像...

多光子显微镜成像技术:偏振分辨倍频显微镜及其图像处理 在非线性光学显微镜中,二倍频(SHG)成像通常用于观测内源性纤维状结构,且SHG的强度很大程度上取决于入射光束的偏振方向与目标分子取向轴之间的相对角度。因此,基于偏振的SHG成像(P-SHG),可通过分析SHG信号强度与入射光束的偏振态之间

LaVision双光子显微镜-多线扫描双光子成像(二)

2. 方法与结果    为了从激光扫描显微镜的功能性成像中得出重要结论,一个高的时间分辨率是很重要的。在低光情况下,这通常通过进行单线扫描来获取。这被以一个垂直系统(VS)神经元的突触前分支的激光共聚焦(Leica SP2)钙离子成像示例 (see Fig. 1, Table 1). 这类神

LaVision双光子显微镜-多线扫描双光子成像(四)

2.3. 多线TPLSM中的获取模式    我们以两种获取模式操作多线TPLSM:第一种,整个研究使用所谓“帧扫描”模式,以64束激光在X、Y方向扫描样品。因此焦平面上激发了均一性照明,假定光束阵列的横向步长尺寸没有过于粗糙(通常使用≤400 nm的步长尺寸)。在Fig. 3A,展示了以“帧

LaVision双光子显微镜-多线扫描双光子成像(一)

Journal of Neuroscience Methods 151 (2006) 276–286Application of multiline two-photon microscopy to functional in vivo imagingRafael Kurtz a,∗, Matthi

LaVision双光子显微镜-多线扫描双光子成像(三)

2.2.多线TPLSM中通过成像检测释放光    在单光束TPLSM中,光电倍增管PMT或者雪崩二极管APD可以很方便地用于释放光检测,由于双光子激发的原理,激发只发生在激光焦点处。因此,用于屏蔽离焦光线的共焦小孔变得不必要,并且可以使用NDD检测。这意味着激发光不会被送回扫描镜,而是直接进入位于靠