北大程和平院士Cell子刊发表重要成果

来自北京大学、第四军医大学的研究人员揭示出,质子触发了线粒体“超氧炫”(mitoflash)。这一重要的研究发现发布在Cell出版社旗下的《Biophysical Journal》杂志上。 中科院院士、北京大学的程和平(Heping Cheng)教授,以及北京大学分子医学研究所的王显花(Xianhua Wang)博士是这篇论文的共同通讯作者。程和平院士的主要研究方向包括:钙信号与活性氧(ROS)信号:线粒体超氧炫 (Superoxide Flash)分子基础、调节机制及生理病理意义;钙信号与ROS信号调控心脏发育、再生;钙信号与ROS信号的计算-数学模型。迄今发表论文近百篇。 2008年发表于Cell杂志上的一篇论文中,程和平教授及同事发现在活体细胞中存在局部、间歇性、量子化超氧生成事件,并命名为“超氧炫”。超氧炫是细胞内单个线粒体基质中超氧信号的瞬时爆发现象,此发现为研究生理和病理情况下ROS信号及其调控开拓了新视野。......阅读全文

程和平毕国强Nature子刊发现一种关键新机制:“线粒体炫”

  为什么有的记忆能铭刻一生而有的只能存在几分钟?短期的记忆如何转变为长期的记忆?  来自中国科学技术大学生命科学学院毕国强课题组与北京大学分子医学研究所程和平课题组合作,发表了题为“Dendritic mitoflash as a putative signal for stabilizing l

北大程和平院士Cell子刊发表重要成果

  来自北京大学、第四军医大学的研究人员揭示出,质子触发了线粒体“超氧炫”(mitoflash)。这一重要的研究发现发布在Cell出版社旗下的《Biophysical Journal》杂志上。  中科院院士、北京大学的程和平(Heping Cheng)教授,以及北京大学分子医学研究所的王显花(Xia

董梦秋发现线粒体的“超氧炫”频率可以预测线虫的寿命

  2014年2月12日,北京生命科学研究所董梦秋实验室与北大分子医学研究所程和平实验室在《自然》杂志在线发表题为“Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans”的文章,报

中国科学家Nature揭示寿命早期预测因子

  来自中国的科学家们手中握住了一个水晶球:他们发现基于线虫细胞中线粒体的“超氧炫”频率可以预测它们生存的寿命。   在发表于2月12日《自然》(Nature)杂志上的论文中,来自北京生命科学研究所、北京大学分子医学研究所等处的研究人员报告称,在大多数情况下可在成年早期预测一个生物体的寿命。  

科学家发现“线粒体炫”调控神经元突触水平的长时程记忆

  为什么有的记忆能铭刻一生而有的只能存在几分钟?短期的记忆如何转变为长期的记忆?近日,中国科学技术大学生命科学学院毕国强课题组与北京大学分子医学研究所程和平课题组合作,发现神经元树突“线粒体炫信号”在神经突触传递短时程记忆向长时程记忆的转化中可能发挥着关键作用,相关成果于6月26日在《自然-通讯》

北大程和平教授等人发文-解密纳米钙火花

  钙离子是所有动植物细胞内的信号物质,调控诸如神经元通讯、心脏搏动、基因表达等复杂多样的生命过程。日前,北京大学研究人员发展了一种新颖的实验方法,首次实现了对纳米尺度钙信号的高精度实时观测。研究论文“Imaging Ca2+ Nanosparks in Heart with a New Tar

2008年中国高校十大科技进展评选揭晓

  教育部网站消息:由教育部科学技术委员会组织评选的2008年度“中国高等学校十大科技进展”已于近日揭晓,现予以公布。入选项目名单(按主持单位拼音顺序排序)如下:   2008年度“中国高等学校十大科技进展”入选名单 序号 项 目 名 称 主持人 主持单位

广州生物院发现量子化“线粒体炫”启动体细胞重编程

  日前在线发表了中国科学院广州生物医药与健康研究院刘兴国研究组的最新研究成果:Transient Activation of Mitoflashes Modulates Nanog at the Early Phase of Somatic Cell Reprogramming(《“线粒体炫”的短

程和平院士:创业是一件顶天立地的事

   “作为北大,作为科技创业者,就是要像王选那样,做“顶天立地”的事,这样才能在世界舞台上说:“这些技术是中国发明的!”、“我们的做法只是提供了一个探索,平台和经验都是为了能给年轻人探路。”程和平,中国科学院院士,2006年,他辞去了在美国高级研究员的终身职位,回到了母校北京大学,从此深耕于北京大

广州生物院发现量子化“线粒体炫”启动体细胞重编程

  11月5日,国际学术杂志《细胞·代谢》(Cell Metabolism)在线发表了中国科学院广州生物医药与健康研究院刘兴国研究组的最新研究成果:Transient Activation of Mitoflashes Modulates Nanog at the Early Phase of So

程和平、肖瑞平夫妇-致力培养分子医学领域的领军人才

早晨7点的北京大学分子医学研究所,一对夫妻不徐不疾地走了进来。“除了打扫阿姨,我跟程和平总是最早来的。”她说。 “每天一起上下班,如果天气好,偶尔还陪肖瑞平去未名湖走上半个小时。”他笑笑说。 中国科学院院士、北京大学分子医学研究所钙信号与线粒体生物医学实验室主任等,是属于程和平的

氧电极法线粒体耗氧量结果怎么看

离子选择性电极的测定结果与溶液状态关系很大,如果你的溶液本底相差大,则测出来的结果就不准确。采用总离子强度调节缓冲剂(TISAB)的作用就是使测定条件相近,因此,采用相同的TISAB应该是首选。如果对标液和未知液实在做不到采用相同的TISAB,那所产生的影响有多大,必须通过条件试验来确定。在相同氟离

Science发表超深度线粒体RNA测序

  蒙特利尔大学的一项新研究显示,线粒体遗传物质在个体内和个体间具有显著的多样性,而线粒体RNA上的修饰影响着我们每个人的身体健康。   线粒体基因组中的突变与多种疾病和生物学过程有关,然而此前人们还不了解线粒体转录组中的序列多样性。这项研究通过超深度线粒体RNA测序,首次为人们展示了线粒体RNA

线粒体的超活染色与观察

实验简介:线粒体是机体能量代谢的重要细胞器。本实验以肝细胞、人口腔上皮细胞、洋葱鳞茎内表皮细胞三种材料为实验对象,通过詹纳斯绿B 专一性地对线粒体进行超活染色,可使线粒体内中的细胞色素氧化酶系呈蓝绿色反应,而线粒体周围的细胞质呈无色反应,由此作为线粒体的特异性特征。实验学时3 个。一、实验目

线粒体的超活染色与观察

实验原理活体染色是指对生活有机体的细胞或组织某些结构能着色但又不影响细胞的生命活动和产生任何物理化学变化以致引起细胞的死亡的一种染色方法。因此活染技术通常可用来研究生活状态下的细胞形态结构和生理、病理状态。根据所用染色剂的性质和染色方法的不同,通常把活体染色分为体内活染与体外活染两类。体内活染是以胶

程和平院士开发深脑成像的利器—微型化三光子显微镜

  2023年2月23日,北京大学程和平/王爱民团队在Nature Methods在线发表题为“Miniature three-photon microscopy maximized for scattered fluorescence collection”的文章。文中报道了重量仅为2.17克的微

线粒体超活性染色及形态结构观察

实验概要线粒体是机体能量代谢的重要细胞器。本实验以肝细胞、人口腔上皮细胞、洋葱鳞茎内表皮细胞三种材料为实验对象,通过詹纳斯绿B 专一性地对线粒体进行超活染色,可使线粒体内中的细胞色素氧化酶系呈蓝绿色反应,而线粒体周围的细胞质呈无色反应,由此作为线粒体的特异性特征。实验原理活体染色是指对生活有机体的细

超氧阴离子的概念

超氧阴离子:人体内有一定数量的存在,不发生化学变化对人体无害,但与羟基(—OH)结合后的产物会导致细胞DNA损坏,破坏人类机体功能。中文名超氧阴离子外文名superoxide anion消除方法观光木的叶片挥发油释    义不发生化学变化对人体无害

超氧细胞疗法的基本介绍

  作为治疗肝病的最先进方法“超氧细胞疗法”,由中国肝病防治基金会进行技术攻关,经百余名肝病专家经反复论证,得到了全国肝病治疗研讨会的极力推荐,可实现肝病的快速治疗,成功解决肝病慢性化、易变异耐药的世界性难题,该疗法通过世界上最先进的非玻璃放电技术产生三氧来诱导、激活血液中的各种细胞成分,并通过血液

消除超氧阴离子的方法

消除超氧阴离子的方法:技术是利用观光木的叶片挥发油抑制超氧阴离子的产生并清除其活性,可降低超氧阴离子对细胞DNA的损伤。

线粒体和液泡系的超活染色与观察

实验原理活体染色是指对生活有机体的细胞或组织能着色但又无毒害的一种染色方法。其目的是显示生活细胞内的某些结构,而不影响细胞的生命活动和产生任何理化变化以致引起细胞死亡。活染技术可用来研究生活状态下的细胞形态结构和生理、病理状态。根据所用染色剂的性质和染色方法的不同,活体染色可分为体内活染与体外活染两

线粒体和液泡系的超活染色与观察

实验材料人口腔上皮细胞洋葱鳞茎内表皮细胞绿豆幼根根尖试剂、试剂盒Ringer溶液中性红溶液 詹纳斯绿B溶液仪器、耗材显微镜恒温水浴锅剪刀镊子解剖刀载玻片盖玻片吸管牙签吸水纸实验原理活体染色是指对生活有机体的细胞或组织能着色但又无毒害的一种染色方法。其目的是显示生活细胞内的某些结构,而不影响细胞的生命

线粒体和液泡系的超活染色与观察

一、实验目的掌握一种活体染色方法,了解光学显微镜下线粒体和液泡系基本形态结构。二、实验用品(一) 材料和标本兔子一只、线粒体的电镜照片;蟾蜍一只,软骨细胞电镜照片。(二) 器材和仪器显微镜、手术器材一套、解剖盘、小平皿、载片、盖片、吸水纸、10ml注射器、吸管。(三) 试剂l/300詹纳斯绿B染液、

关于超氧自由基的简介

  超氧自由基,亦称过氧自由基(.O2)22-。人体内产生的一种活性氧自由基,能引发体内脂质过氧化,加快从皮肤到内部器官整个肌体的衰老过程,并可诱发皮肤病变、心血管疾病、癌症等,严重危害人体健康,人体通过超氧化物歧化酶(SOD)将其除去。

超氧自由基有哪些危害?

  1 、自由基摧毁细胞膜,导致细胞膜发生变性,使得细胞不能从外部吸收营养,也排泄不出细胞体内的代谢废物,并丧失了对细菌和病毒的抵御能力。从而使人体免疫力低下、疲劳和器官病变。如果导致细胞死亡或细胞内杂质无法代谢就会形成色素沉积,产生黄褐斑、蝴蝶斑、老年斑等。  2 、自由基攻击正在复制中的基因,造

关于超氧阴离子的基本介绍

  消除超氧阴离子的方法:技术是利用观光木的叶片挥发油抑制超氧阴离子的产生并清除其活性,可降低超氧阴离子对细胞DNA的损伤。  需氧生物体内氧分子作为最重要的电子受体在物质代谢过程中被还原:O2+4e-→2O-,如此利用的氧约占组织耗氧总量的95%,其余5%的氧在还原过程中由于接受电子数目不等可以形

揭秘脑神经元线粒体与胞质之间钙瞬变的概率性耦合

  Nature Communications在线发表了北京大学分子医学研究所程和平团队和纽约大学医学院甘文标团队的合作论文“Brain Activity Regulates Loose Coupling between Mitochondrial and Cytosolic Ca2+ Transi

BCEIA-2023-‖-学术报告会大会报告-2

BCEIA 2023预登记通道:http://t2.eainfor.com/T/p/103_6  语言:英文  时间:2023年9月6日  地点:学术会议区W201  邀请全球知名科学家介绍DNA存储、纳米毒理学等前沿科学技术,分享球差电镜、微型化双光子显微镜等高端仪器的研究进展,同时就质谱法和核磁

何耀超:医院用工业氧养着谁?

  湖南省郴州市药监局证实,郴州市儿童医院曾使用工业氧冒充医用氧为患者使用,儿童医院一月份就被查处,然而该院二三月份仍在购买使用工业氧。(2010年4月10日《新京报》)   郴州市以工业氧冒充医用氧的情况,并非只在郴州市儿童医院一家出现。郴州市药监局办公室主任崔铀能承认“这是个事实”。这意味着郴

动物所等发现舞蹈病神经元线粒体DNA氧化损伤的机制

  亨廷顿氏舞蹈病是一种常染色体显性遗传的神经退行性疾病,主要表现为运动障碍、认知和精神紊乱,一般在发病后10-15年内死亡。该疾病的病理特征是大脑纹状体神经元的渐进性丢失,但亨廷顿基因突变导致纹状体神经元选择性死亡的机制还不清楚,目前也没有任何治疗手段。前人一系列研究发现,与大脑其他区域