Antpedia LOGO WIKI资讯

电子管的爱迪生效应

身为使用者并不需要在意何者为真,只要按照科学家的结论行事就可以了。说这一段就是因为当初 爱迪生发明灯泡之后,发现他生产的灯泡灯丝老是从正极端烧断,于是进一步实验在灯泡中加入一块小金属板,点灯之后将金属板连接电表,分别施以正电压以及负电压,观察电流的情形。 对于当时的科学而言,位于真空状态下且不连接的金属板,不论如何连接是不可能产生电流的,但怪事发生了,爱迪生发现某种物质(其实就是电子)会透过金属板,会从电池的负极腾空“跳”到正极,此发现当然激起更大的实验动机,此现象便称为“ 爱迪生效应”。这也是科学家首次质疑电流流动的方向,以及自由电子在空间中流动的现象。......阅读全文

电子管的爱迪生效应

  身为使用者并不需要在意何者为真,只要按照科学家的结论行事就可以了。说这一段就是因为当初 爱迪生发明灯泡之后,发现他生产的灯泡灯丝老是从正极端烧断,于是进一步实验在灯泡中加入一块小金属板,点灯之后将金属板连接电表,分别施以正电压以及负电压,观察电流的情形。  对于当时的科学而言,位于真空状态下且不

电子管的发展历史

  1883年,发明大王托马斯·爱迪生正在为寻找电灯泡最佳灯丝材料,曾做过一个小小的实验。他在真空电灯泡内部碳丝附近安装了一小截铜丝,希望铜丝能阻止碳丝蒸发。但是他失败了,他无意中发现,没有连接在电路里的铜丝,却因接收到碳丝发射的热电子产生了微弱的电流。当时爱迪生正潜心研究城市电力系统,没重视这个现

电子管的阳极

  电子管的阳极  阳极是收集阴极发射出来的大部分电子的电极。电子管工作时, 由于电子管轰击板极表面, 以及其它电极的热辐射, 在板极产生大量热能, 因其板极的耗散功率密度是每平方厘米几十瓦到几百瓦, 这样大的功率密度采用自然辐射或传导的冷却已不能胜任。故须采用强制冷却方式。常用的有风冷、水冷和蒸发

电子管简介

  电子管,是一种最早期的电信号放大器件。被封闭在玻璃容器(一般为玻璃管)中的阴极电子发射部分、控制栅极、加速栅极、阳极(屏极)引线被焊在管基上。利用电场对真空中的控制栅极注入电子调制信号,并在阳极获得对信号放大或反馈振荡后的不同参数信号数据。早期应用于电视机、收音机扩音机等电子产品中,近年来逐渐被

研究证明,爱迪生、达利是对的

  当托马斯·爱迪生的发明工作受阻时,他会拿着钢球坐在椅子上打盹。当他开始入睡、肌肉放松时,球就会落在地板上——这便会唤醒他。  100多年后的今天,科学家在实验室里重复了这一“技巧”。研究发现,遵循爱迪生方法的人解决数学问题的机会增加了3倍。秘诀就是在深度睡眠之前,在睡眠和清醒之间的过渡阶段醒过来

爱迪生氏病的临床表现

  慢性肾上腺功能不足常见的临床表现包括:  慢性疲劳。 疲倦,运动后恶化,卧床休息后会好转 全身性 肌肉无力,不限制于哪些特定肌肉。 食欲不振。 体重减轻。

国家级实验室里的“爱迪生”

  在武钢股份质检中心炼钢一室,这个具有国家实验室资质的炉前快速分析室里,机器人手臂旋舞、精密仪器智能分析在不停发出实验报告,中心化验分析首席技师王宁每天在这些设备间穿梭,深研分析技术,提升把关效率,解决化验难题。  王宁是工人技师,武钢首次对外转让专利所有权是由王宁完

爱迪生氏病的实验室检查

  1.血糖------下降  2.血电解质-------钠减少,但很少低于120mml/1,血钾升高,很少超过7mmol/1  3.血酮体 -中度酮症,血浆CO2为15—20mEq/L  4.肾功能-----血浆BUN升高  5.血常规-----外围血嗜酸球计数〉50/mm3(应除外合并寄生虫及过

概述电子管的工作原理

  现在,我们更进一步来看看最简单的真空管工作原理。 整理一下刚刚所述,真空管具有几个极,由最内层到最外层分别为:灯丝,阴极,栅极,屏极。将一支真空管拆开之后,绘于附图之中,从图可知,当点亮灯丝,灯丝温度逐渐升高,虽然是真空状态,但灯丝温度以辐射热的方式传导至阴极金属板上,等到阴极金属板温度达到电子

电子管的栅极相关介绍

  电子管的栅极  电子管的栅极根据它们在管中所起的作用不同分为一栅、二栅, 有时也称为控制栅、帘栅。第一栅的主要作用是控制阴极电流, 二栅的作用是屏蔽板极对第一栅的影响。栅极结构关系到本身的机械强度和散热效果, 关系到管子可否稳定工作。为了减小电子的渡越时间, 栅阴间距作的很短甚至不到1mm ,

电子管常识知多少?十款常见EL34电子管

  电子管种类  电子管种类繁多,型号庞杂,在音频领域可作如下分类:  1.按用途分类  在音响领域电子管按其用途可分为电压放大管、功率放大管、整流管、稳压管等。  2.按管形分类  电子管有很多种管形,可分为:  (1)直棒形,如6N8P、6J8P、6N9P、EL34、805;  (2)凸

欧盟“关掉”白炽灯 正式告别“爱迪生时代”

  今年8月31日是欧盟境内全面禁售白炽灯泡的最后期限。9月1日,记者走访了布鲁塞尔的几家大型超市和电器商店,发现灯具货架上以前陈设的低瓦数(40瓦以下)白炽灯已经踪影全无,取而代之的是各种各样的新型节能灯具。   欧盟全面禁售白炽灯泡标志着欧盟正式告别已延续了100多年的“爱迪生时代”。早在20

“中国爱迪生”蔡祖泉逝世 享年86岁

  我国电光源研究的开拓者,复旦大学教授、原副校长蔡祖泉,因病医治无效,于7月17日在华东医院逝世,享年86岁。   蔡祖泉有“中国爱迪生”之称。上世纪60年代,蔡祖泉创建了我国第一个电光源实验室,开始了该领域的系统研究。他相继研制成功了我国电光源史上第一个氢灯、第一个高压汞灯、第一个氪灯、第一个

电子管的阴极相关内容

  电子管的阴极  阴极是用来放射电子的部件, 分为氧化物阴极和碳化钍钨阴极。一般来说氧化物阴极是旁热式的, 它是利用专门的灯丝对涂有氧化钡等阴极体加热, 进行热电子放射。寿命一般在1000 ~ 3000 小时。碳化钍钨阴极一般都是直热式的,通过加热即可产生热电子放射, 所以它既是灯丝又是阴极。理论

电子管电流与电子流动

   真空管当然不是无缘无故做几片金属板封装在抽真空的玻璃瓶里进行实验的,它的发展与发明大王爱迪生有着一段故事。  电流与电子流动的方向恰巧相反  在此之前试问一个小问题:电路分析上“电流”的方向与实际上“电子”流动的方向是否相同?答案是否定的,电流与电子流的方向是恰巧相反的。过去的科学家无法观察电

直热式电子管钨丝制作的灯丝介绍

  灯丝(Filament)可以使用不同的材质制成,由于直热式三极管直接将灯丝当作阴极,因此灯丝的特性直接影响着直热式真空管的性能。基本上,真空管的灯丝主要可分成三种材质构成,第一种当然是耐高温的钨丝。将纯度高的钨丝抽成细丝,卷绕成状在真空管的最内层,通电之后即可发出温度。但钨丝必须加温到两千余度时

钩状效应的效应

前带、后带效应从图中可见,曲线的高峰部分是抗原抗体分子比例合适的范围,称为抗原抗体反应的等价带(zone of equivalence)。在此范围内,抗原抗体充分结合,形成的沉淀物最多,表明抗原与抗体浓度的比例最为合适,称为最适比(optimalratio)。在等价带前后分别为抗体、抗原过剩则影响沉

日本“机器人治疗脊髓损伤技术”获美国“爱迪生奖”

        据日本媒体台5月15日报道,由日本茨城县筑波市某企业开发的“机器人治疗脊髓损伤技术”,近日获得了美国“爱迪生奖”金奖。  据报道,“爱迪生奖”由美国市场学协会在27年前设立,该奖每年颁发给创新产品或创新服务的开发人员,奖项由约3000位评审投票决定。  今年“爱迪生奖”金奖得主为筑波

电光效应的效应特点

某些晶体,特别是压电晶体,在外加电场的作用下,改变了原先各向异性的性质(如沿原先光轴的方向产生了附加的双折射效应),这种电光效应称为普克耳斯效应。普克尔斯效应与克尔效应相比,有以下特点:a)具有泡克耳斯效应的透明介质一般为晶体;b)普克尔斯效应是线性电光效应,由附加双折射效应所引起的o光和e光的相位

电光效应的效应特点

某些晶体,特别是压电晶体,在外加电场的作用下,改变了原先各向异性的性质(如沿原先光轴的方向产生了附加的双折射效应),这种电光效应称为普克耳斯效应。普克尔斯效应与克尔效应相比,有以下特点:a)具有泡克耳斯效应的透明介质一般为晶体;b)普克尔斯效应是线性电光效应,由附加双折射效应所引起的o光和e光的相位

关于别构效应的效应通性介绍

  1965年 J.莫诺等提出,具有别构效应的体系应具有以下的通性:  ①大部份别构蛋白质是含有几个亚单位的寡聚体或多聚体。  ②别构效应常和蛋白质的四级结构变化有关(即亚基间键的变化)。  ③异促效应可以是正的或负的,而同促效应总是正的协同作用。  ④已经知道的仅具有异促效应的体系很少,但多数含有

磁光效应和光磁效应的概念

磁光效应克尔磁光效应的最重要应用就是观察铁磁材料中难以捉摸的磁畴。因不同磁畴区的磁化强度的不同取向使入射偏振光产生方向、大小不同的偏振面旋转,再经过检偏器后就出现了与磁畴相应的明暗不同的区域。利用现代技术,不但可进行静态观察,还可进行动态研究。这些都导致一些重要发现和关于磁畴、磁学参数的有效测量。光

关于位置效应的稳定型效应介绍

  简称S型位置效应,表型改变是稳定的。  果蝇的复眼由许多小眼组成。野生型的正常复眼呈椭圆形;棒眼突变型由于小眼数的显著减少而呈不同程度的狭棒形。棒眼基因B为显性,位于X染色体上。纯合的棒眼果蝇的后代中常出现少数野生型个体;同时出现少数复眼比棒眼更狭细的超棒眼个体。这两种个体出现的频率都约占1/1

光磁电效应和霍尔效应的异同

虽然,光磁电效应与霍尔效应相似,但是它们是不同的效应。体现在三个方面,1)光磁电效应中在磁场作用下移动的是电子空穴对,而霍尔效应中移动的是自由电子。2)针对材料不同,一个是半导体材料,一个是导体材料。3)使用情形也不一样,一个需要光照,一个不需要。利用光磁电效应可制成半导体红外探测器。这类半导体材料

光磁电效应和霍尔效应的异同

光磁电效应和霍尔效应的异同虽然,光磁电效应与霍尔效应相似,但是它们是不同的效应。体现在三个方面:1)光磁电效应中在磁场作用下移动的是电子空穴对,而霍尔效应中移动的是自由电子。2)针对材料不同,一个是半导体材料,一个是导体材料。3)使用情形也不一样,一个需要光照,一个不需要。利用光磁电效应可制成半导体

诱导效应与共轭效应的异同

  (1)不同之处  诱导效应:存在σ键中;通过原子间电负性的差异而导致键的极性改变使整个分子电子云发生移动;是短距离效应,一般有3个碳原子后基本消失;极化变化是单一方向。  共轭效应:存在于共轭体系中;通过π电子的运动,沿着共轭链传递;强度一般不因共轭链的长度而受影响,属长距离电子效应;极性交替出

波克尔斯效应和克尔效应的区别

波克尔斯效应和克尔效应的区别在于:波克尔斯效应是与电场大小成正比,而克尔效应则是与电场大小的平方成比例的。

波克尔斯效应和克尔效应的区别

波克尔斯效应和克尔效应的区别在于:波克尔斯效应是与电场大小成正比,而克尔效应则是与电场大小的平方成比例的。

波克尔斯效应和克尔效应的区别

波克尔斯效应和克尔效应的区别在于:波克尔斯效应是与电场大小成正比,而克尔效应则是与电场大小的平方成比例的。

什么是涡流的趋肤效应(集肤效应)?

涡流主要集中在被检试样的表面、亚表面,在一个渗透深度处涡流密度仅为表面的37%,且当检测频率f越大,试样的电导率和磁导率越大,涡流的渗透深度越小。 这种现象称为趋肤效应(或集肤效应)。 因此,普通涡流仪对受检试件表面、近表面缺陷的灵敏度较高,试样深处缺陷的检测灵敏度较低,为了检测试件深处的缺陷,检测