染色质非组蛋白锌指模式简介

负责 5S RNA、tRNA 和部分 snRNA 基因转录的RNA聚合酶Ⅲ所必须的转录因子。TFⅢ A 是首先被发现的锌指蛋白,由344个氨基酸组成。TFⅢ A 含有9个有规律的锌指重复单位,每个单位30个氨基酸残基,其中一对半胱氨酸和一对组氨酸与Zn2+形成配位键。每个锌指单位是一个DNA结合结构域(DNA-binding domain),每个锌指的 C 末端形成α螺旋负责与DNA结合。这类Cys2/His2锌指单位的共有序列(consensus sequence)是:Cys -X2~4 -Cys -X3 -Leu -X2 -His -X3 -His。哺乳类转录因子 SP1 也有类似的锌指结构,由三个锌指单位组成。另一类锌指蛋白含两对半胱氨酸,而不含组氨酸,如哺乳类细胞的甾体类激素受体蛋白。这类Cys2/Cys2锌指单位的结合Z......阅读全文

染色质非组蛋白锌指模式简介

  负责 5S RNA、tRNA 和部分 snRNA 基因转录的RNA聚合酶Ⅲ所必须的转录因子。TFⅢ A 是首先被发现的锌指蛋白,由344个氨基酸组成。TFⅢ A 含有9个有规律的锌指重复单位,每个单位30个氨基酸残基,其中一对半胱氨酸和一对组氨酸与Zn2+形成配位键。每个锌指单位是一个DNA结合

染色质非组蛋白HMG框结构模式

  在发现一组丰富的高速泳动族蛋白(high mobility group protein)以后,首先命名HMG框结构模式。该结构由3个α螺旋组成 boomerang-shaped 结构模式,具有弯曲DNA的能力。因此,具有HMG框结构的转录因子又称为“构件因子(architectural fact

染色质非组蛋白亮氨酸拉链模式

  在构建转录复合物过程中,普遍涉及蛋白与蛋白之间的相互作用,形成二聚体是识别特异DNA序列蛋白的相互作用的共同原则,亮氨酸拉链就是富含Leu残基的一段氨基酸序列所组成的二聚化结构。这类序列特异性DNA结合蛋白家族,包括酵母的转录激活因子(GCN4)、癌蛋白Jun、Fos、Myc以及增强子结合蛋白(

染色质蛋白非组蛋白α螺旋转角α螺旋模式介绍

  这是最早在原核基因的激活蛋白和阻抑物中发现的。迄今已经在百种以上原核细胞和真核生物中发现这种最简单、最普遍的DNA结合蛋白的结构模式。这种蛋白与DNA结合时,形成对称的同型二聚体(symmetric homodimer)结构模式。构成同型二聚体的每个单体由20个氨基酸的小肽组成α螺旋-转角-α螺

染色质非组蛋白螺旋环螺旋结构模式

  HLH这一结构模式广泛存在于动、植物DNA结合蛋白中。HLH由40~50个氨基酸组成两个两性α螺旋,两个α螺旋中间被一个或几个β转角组成的环区所分开。每个α螺旋由15~16个氨基酸残基组成,并含有几个保守的氨基酸残基。具有疏水面和亲水面的两性α螺旋有助于二聚体的形成。α螺旋邻近的肽链 N 端也有

非组蛋白的结构模式

虽然非组蛋白种类众多,但是根据它们与DNA结合的结构域不同,可分为不同的家族。①α螺旋-转角-α螺旋模式(helix - turn - helix motif)这是最早在原核基因的激活蛋白和阻抑物中发现的。迄今已经在百种以上原核细胞和真核生物中发现这种最简单、最普遍的DNA结合蛋白的结构模式。这种蛋

染色质蛋白非组蛋白的介绍

  非组蛋白主要是指与特异DNA序列相结合的蛋白质,所以又称序列特异性DNA结合蛋白(sequence specific DNA binding protein)。利用凝胶延滞实验(gel retardation assay),可以在细胞抽提物中进行检测。首先制备一段带有放射性标记的已知特异序列的D

简述染色质蛋白非组蛋白的特性

  ①酸碱性:组蛋白是碱性的,而非组蛋白则大多是酸性的。  ②多样性:非组蛋白占染色质蛋白的60%~70%,不同组织细胞中其种类和数量都不相同,代谢周转快。包括多种参与核酸代谢与修饰的酶类如DNA聚合酶和RNA聚合酶、HGM蛋白(high mobility group protein)、染色体支架蛋

非组蛋白的结构模式及特点

虽然非组蛋白种类众多,但是根据它们与DNA结合的结构域不同,可分为不同的家族。①α螺旋-转角-α螺旋模式(helix - turn - helix motif)这是最早在原核基因的激活蛋白和阻抑物中发现的。迄今已经在百种以上原核细胞和真核生物中发现这种最简单、最普遍的DNA结合蛋白的结构模式。这种蛋

锌指的基本简介

  锌指(zinc finger),指的是由一个含有大约30个氨基酸的环和一个与环上的4个Cys或2个Cys和2个His配位的Zn2+构成,形成的结构像手指状。  锌指是一种常出现在DNA结合蛋白质中的一种结构基元。锌螯合在氨基酸链中形成锌的指状结构。  锌是某些酶的活性辅助因子,也是某些蛋白质,包

组蛋白分子伴侣DAXX和染色质重塑蛋白ATRX相互作用模式

  近日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所陈勇研究组的最新研究成果,以Structural basis for DAXX interaction with ATRX为题,发表在Protein & Cell上,该成果揭示了组蛋白分子伴侣DAXX蛋白与染色质重塑蛋白ATRX相互作用

非组蛋白的特性

①酸碱性:组蛋白是碱性的,而非组蛋白则大多是酸性的。②多样性:非组蛋白占染色质蛋白的60%~70%,不同组织细胞中其种类和数量都不相同,代谢周转快。包括多种参与核酸代谢与修饰的酶类如DNA聚合酶和RNA聚合酶、HGM蛋白(high mobility group protein)、染色体支架蛋白、肌动

研究发现去甲基化酶REF6是基因组中靶向的重要因素

  核小体是真核生物染色质的基本单位,由DNA缠绕组蛋白八聚体构成。组蛋白翻译后共价修饰是表观遗传调控的重要方式之一,通过影响染色质的状态而调控基因表达等过程。组蛋白H3第27位赖氨酸的三甲基化修饰(H3K27me3)通过维持基因的沉默状态,在动植物细胞命运决定以及生长发育中发挥重要的调控作用。基因

比较组蛋白与非组蛋白的特点及其作用

组蛋白:特点:进化上的极端保守性;无组织特异性;肽链上氨基酸分布的不对称性;组蛋白的修饰作用。作用:1,核小体组蛋白,帮助DNA卷曲形成核小体的稳定结构2,H1组蛋白,在构成核小体时期连接作用,赋予染色体极性3,对染色体DNA的包装起着重要作用非组蛋白:特点:非组蛋白是一类酸性蛋白质,富含天冬氨酸和

比较组蛋白与非组蛋白的特点及其作用

组蛋白:特点:进化上的极端保守性;无组织特异性;肽链上氨基酸分布的不对称性;组蛋白的修饰作用。作用:1,核小体组蛋白,帮助DNA卷曲形成核小体的稳定结构2,H1组蛋白,在构成核小体时期连接作用,赋予染色体极性3,对染色体DNA的包装起着重要作用非组蛋白:特点:非组蛋白是一类酸性蛋白质,富含天冬氨酸和

染色质蛋白组蛋白的相关介绍

  组蛋白是构成真核生物染色体的基本结构蛋白,富含带正电荷的Arg和Lys等碱性氨基酸,等电点一般在pH10.0以上,属碱性蛋白质,可以和酸性的DNA紧密结合,而且一般不要求特殊的核苷酸序列。  用聚丙烯酰胺凝胶电泳可以区分5种不同的组蛋白:H1、H2A、H2B、H3和H4。几乎所有真核细胞都含有这

组蛋白的简介

  重组蛋白的产生是应用了重组DNA或重组RNA的技术从而获得的蛋白质。目前,体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。

组蛋白的简介

  组蛋白(histone)是指所有真核生物的细胞核中,与DNA结合存在的碱性蛋白质的总称。其分子量约10000~20000。  真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合物。因

非组蛋白的概念和检测方法

非组蛋白主要是指与特异DNA序列相结合的蛋白质,所以又称序列特异性DNA结合蛋白(sequence specific DNA binding protein)。利用凝胶延滞实验(gel retardation assay),可以在细胞抽提物中进行检测。首先制备一段带有放射性标记的已知特异序列的DNA

中科大院士PNAS解析“垃圾”RNA

  来自中国科技大学,英国邓迪大学的研究人员围绕一种关键小蛋白:Stc 1的结构和功能展开了研究,从中揭示出了裂殖酵母中RNAi与染色质修饰之间的分子作用机制,指出了非编码RNA的又一重要作用。相关成果公布在《美国国家科学院院刊》(PNAS)杂志上。   文章的通讯作者是中国科技大学生命科学学

中科大院士PNAS解析“垃圾”RNA

  来自中国科技大学,英国邓迪大学的研究人员围绕一种关键小蛋白:Stc 1的结构和功能展开了研究,从中揭示出了裂殖酵母中RNAi与染色质修饰之间的分子作用机制,指出了非编码RNA的又一重要作用。相关成果公布在《美国国家科学院院刊》(PNAS)杂志上。   文章的通讯作者是中国科技大学生命科学学

染色体上的组蛋白和非组蛋白各有何作用

非组蛋白大致包含下列三类蛋白质:①细胞核内大量的酶.包括DNA合成及修复过程中的DNA多聚酶和连接酶,核糖核酸(RNA)聚合酶,以及核酸和蛋白质如组蛋白在修饰过程中所需要的酶;②在染色体中起结构作用的蛋白质;③其他尚未阐明功能的蛋白质.非组蛋白在各种组织和细胞的分化及发育过程中以及在正常细胞向肿瘤细

染色质,解锁癌症表观遗传学的钥匙

  表观遗传学指基因序列不变化的前提下,基因表达发生了可遗传的变化,包括DNA甲基化、染色质改型、基因沉默、RNA编辑、组蛋白修饰(甲基化、乙酰化、磷酸化等)等。其中,染色质改型调控基因表达的过程,涉及多种导致DNA和组蛋白组成变化、染色质构象变化的蛋白质。  众多研究已经证明,染色体畸变和染色质异

锌指的结构

锌指(zinc finger),指的是由一个含有大约30个氨基酸的环和一个与环上的4个Cys或2个Cys和2个His配位的Zn2+构成,形成的结构像手指状。

Polycomb组蛋白与染色质相互作用的关键机制

  2021年6月,Genome Research杂志在线发表了法国巴黎萨克雷大学植物科学研究所Moussa Benhamed教授为通讯作者题为“Polycomb-dependent differential chromatin compartmentalization determines gen

关于组蛋白基因的简介

  组蛋白基因(histone gene) 组蛋白基因是已知的重复基因中唯一具有蛋白质编码机能的基因。它们在DNA合成开始前短暂地表达,因而它的活动与细胞周期密切相关。  基因组中存在大量重复序列用以编码组蛋白是有其重要意义的。DNA复制时,组蛋白也要成倍增加,而且往往在DNA合成一小段后,组蛋白马

清华Nature子刊发表表观遗传学新成果

  生物通报道:高等生物的基因组DNA围绕着由四种组蛋白组成的八聚体,形成碟状的核小体结构。基因组DNA以这样的形式包装成为染色质,使DNA受到良好的保护。通过“读取”模块识别组蛋白共价修饰是表观遗传学调控的一个主要机制。  最近人们发现了多种组蛋白赖氨酸酰化,比如巴豆酰化(Kcr)、丁酰化(Kbu

遗传发育所发现植物组蛋白去甲基化酶招募的新机制

  核小体作为真核生物染色质的基本单位,由DNA缠绕组蛋白八聚体构成。组蛋白N端存在多种共价修饰,这些翻译后修饰通过影响染色质的状态而调控基因表达等过程。组蛋白H3第27位赖氨酸的三甲基化修饰(H3K27me3)通过维持基因的沉默状态,在动植物细胞命运决定以及发育中起着重要的调控作用。实验室前期研究

非活性染色质的概念和特征

非活性染色质是指不具有转录活性的染色质。

锌指蛋白的定义

通常由一系列锌指组成。 具有重复结构的氨基酸模式,相隔特定距离的胱氨酸结合锌指,能与某些RNA/DNA 结合。