中科大院士PNAS解析“垃圾”RNA
来自中国科技大学,英国邓迪大学的研究人员围绕一种关键小蛋白:Stc 1的结构和功能展开了研究,从中揭示出了裂殖酵母中RNAi与染色质修饰之间的分子作用机制,指出了非编码RNA的又一重要作用。相关成果公布在《美国国家科学院院刊》(PNAS)杂志上。 文章的通讯作者是中国科技大学生命科学学院施蕴渝院士,以及邓迪大学Elizabeth H. Bayne,其中施蕴渝院士研究组主要研究兴趣包括用多维核磁共振波谱及计算生物学研究与重大疾病或重要生理功能相关的蛋白质结构,动力学与功能关系,以及蛋白质与蛋白质,蛋白质与核酸,蛋白质与小分子配基的相互作用等。 ENCODE项目的研究数据表明,四分之三的人类基因组是能转录的,但其中只有最多不过1.5%的能编码出蛋白,其余的非编码RNAs(ncRNA)——“垃圾”RNA,包括5'和3'非翻译区mRNAs,都发挥着表观遗传,转录和转录后基因网络调控等方面的作用。 研究表明,......阅读全文
研究发现激酶解锁异染色质的“递进修饰”模式
11月24日,《细胞死亡&分化》(Cell Death & Differentiation)在线发表了中国科学院广州生物医药与健康研究院刘兴国/裴端卿/陈可实团队的最新研究成果MAP2K6 Remodels Chromatin and Facilitates Reprogramming by A
研究揭示染色质修饰调控植物基因表达新机制
8月6日,中国科学院分子植物科学卓越创新中心/植物生理生态研究所植物逆境生物学研究中心植物分子遗传国家重点实验室何跃辉研究组(与刘仁义研究组合作)和杜嘉木研究组(与美国威斯康辛大学钟雪花研究组合作)在《自然-遗传学》背靠背分别发表题为Polycomb-mediated gene silencin
m6A修饰新功能——调控染色质状态和转录活性
m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。2020年1月17日,美国芝加哥大学何川,中科院北京基因组研究所韩大力和同济
揭秘m6A修饰新功能----调控染色质状态和转录活性
m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。 2020年1月17日,美国芝加哥大学何川,中科院北京基因组研究所
揭秘m6A修饰新功能----调控染色质状态和转录活性
文章导读 m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。 2020年1月17日,美国芝加哥大学何川,中科院
庄小威院士:新成像方法测量染色质的表观遗传修饰
空间组学方法的最新发展使得单细胞转录组分析和三维基因组组织具有较高的空间分辨率。空间分辨单细胞表观基因组学方法将扩展空间组学工具的知识库,加速对细胞和组织功能的空间调节的理解。 2022年10月21日,哈佛大学庄小威团队在Cell 在线发表题为“Spatially resolved epige
生命科学:染色质修饰沉默植物基因表达领域获重要突破
在国家自然科学基金(项目编号:31721001)等资助下,中国科学院上海生命科学研究院植物逆境生物学研究中心何跃辉课题组在染色质修饰沉默植物基因表达领域获重要突破,发现了植物特有的染色质凝缩蛋白EMF1与含BAH结构域的蛋白形成BAH-EMF1蛋白复合体,以介导高等植物基因沉默的分子机制。研究成
染色质修饰如何调控基因表达?-中国学者提出新见解
中科院分子植物科学卓越创新中心/植物生理生态研究所植物逆境生物学研究中心的研究人员最新发表两篇Nature Genetics文章,利用生化、分子、遗传、组学及结构生物学等研究方法,分别揭示了植物特有染色质凝缩蛋白EMF1与含BAH结构域的SHL和EBS形成BAH-EMF1复合体而介导植物基因沉默
陈捷凯课题组发现RNA-m6A修饰调控异染色质形成的新机制
近日,中国科学院广州生物医药与健康研究院研究员陈捷凯课题组发现了RNA m6A修饰调控异染色质形成的新机制,阐明了RNA m6A阅读器YTHDC1在这一机制中的关键作用:抑制基因组中广泛分布的ERVK、IAP、LINE1等转座元件限制胚胎干细胞向全能性干细胞转化,相关研究成果以The RNA m
常染色质与异染色质的功能差异
常染色质区域的基因可以被转录为信使RNA。常染色质区域非折叠的结构允许基因调控蛋白和RNA聚合酶与其上的DNA序列结合,从而开启转录过程。在转录过程中,并非所有的常染色质都会被转录,但基本上非转录的部分会折叠为异染色质以保护暂时其上不用的基因。因此细胞的活性与细胞核中的常染色质数目有直接关系。常染色
异染色质和常染色质的结构差异
染色质可以分为两种类群,异染色质和常染色质。最开始,这两种形式是通过其在染色之后的颜色深浅区分的,常染色质一般着色较浅,而异染色质着色很深,表明其紧密聚集。异染色质通常集中在细胞核的边缘区域。然而,不同于这种早期的二分法,最近的研究表明在动物和植物体内都拥有不止这两种染色体结构,可能会有四到五种,区
多肽荧光标记——FITC修饰和AMC修饰
荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操
PEG修饰及其修饰GLP1的意义
PEG修饰是一个使多肽或蛋白质在治疗或生物技术方面的效力得以提高的重要过程。当PEG以适当的方式连接在蛋白质或多肽上时,它能改变许多的特征,而主要的生物活性功能,如酶活性或特异结合位点,可以保留下来。PEG修饰通过如下几种途径改善药物的性能。首先,PEG连接在蛋白质或多肽的表面上,提高了它的分子大小
多肽荧光标记——FITC修饰和AMC修饰
荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操
异染色质的主要类型兼性异染色质
在一定时期的特种细胞的细胞核内, 原来的常染色质可转变成兼性异染色质。如雄性个体的细胞含有一个瘦小的Y染色体和一个大的X染色体, 由于X和Y染色体上很少有共同的基因, 对于雄性来说, X染色体上的基因就只有一个拷贝。虽然雌性细胞有两条X染色体, 也只有一条具有转录活性, 另外一条X染色体像异染色质一
异染色质的主要类型组成性异染色质
组成性异染色质,指除S期以外在整个细胞周期均处于聚缩状态, DNA包装比基本不变,可构成多个染色中心。
RNA加工修饰
中文名RNA加工修饰所属领域生物学定义RNA加工修饰,主要加工方式是切断和碱基修饰,真核生物tRNA前体一般无生物学特性,需要进行加工修饰。
翻译后修饰
中文名翻译后修饰外文名Post-translational modification定义翻译后修饰是指蛋白质在翻译后的化学修饰。对于大部分的蛋白质来说,这是蛋白质生物合成的较后步骤。
染色质的定义
染色体在细胞周期的间期时DNA的螺旋结构松散,呈网状或斑块状不定形物,即染色质。以浓集状态存在者,称异染色质(1~eterochromatin);以分散状态存在者,称常染色质(euchromatin)。常染色质染色较浅且均匀,异染色质染色深。性染色质与性染色体(x染色体和Y染色体)有关,称x染色
染色质的分类
间期染色质按其形态特征、活性状态和染色性能区分为两种类型:常染色质和异染色质。按功能状态的不同可将染色质分为活性染色质和非活性染色质。
性染色质检测
实验方法原理 在间期细胞核中,女性X染色质和男性Y染色质均可用特殊染色法显示出来。女性的两个X染色体中的一个,在间期时的染色质呈异固缩(Heteropyconosis),呈深染的小体称Barr氏体。Barr氏体位于间期细胞核内面,呈三角形或半月形小体,易为碳酸复红或硫堇等染料着色。正常女性Barr氏
多肽荧光标记——FITC修饰和AMC修饰(一)
荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操作简
多肽荧光标记——FITC修饰和AMC修饰(二)
(2)在整条肽中的某个Lys侧链接入FITC,Lys侧链为末端为-NH2的四碳直链烷基,直接起到了降低空间位阻的作用。这种修饰方式能够灵活的在整条肽中任何位置进行FITC修饰,而不仅仅局限于末端。我们所采用的FITC修饰多肽的两种形式,都具有操作简便,成功率高,容易分离纯化等优点。2.AMC修饰7-
异染色质的功能
关于异染色质的功能,还未深入了解。但以下的几点是明显的。 1结构型异染色质可以加强着丝点区,使着丝粒稳定,以确保染色体分离。 2可以隔离和保护重要基因(例如NOR区的18S和28S基因),防止或减少基因突变和交换。 3促进物种分化,同源染色体可通过其异染色质区的重复序列在减数分裂时配对,这
概述染色质的成分
通过分离胸腺、肝或其他组织细胞的核,用去垢剂处理后再离心收集染色质进行生化分析,确定染色质的主要成分是DNA和组蛋白,还有非组蛋白及少量RNA。大鼠肝细胞染色质常被当作染色质成分分析模型,其中组蛋白与DNA含量之比近于1:1,非组蛋白与DNA之比是0.6:1,RNA与DNA之比为0.1:1。DN
异染色质的功能
关于异染色质的功能,还未深入了解。但以下的几点是明显的。 1结构型异染色质可以加强着丝点区,使着丝粒稳定,以确保染色体分离。 2可以隔离和保护重要基因(例如NOR区的18S和28S基因),防止或减少基因突变和交换。 3促进物种分化,同源染色体可通过其异染色质区的重复序列在减数分裂时配对,这
染色质重组的意义
染色质重组过程中,核小体滑动可能是一种重要机制,它不改变核小体结构,但改变核小体与DNA 的结合位置。实验证明,这种滑动能被核小体上游的“十字形”结构阻断。但“滑动”机制并不能解释所有实验现象。人们推测,在重组过程中,还有其他机制如核小体可能与DNA 分离,然后核小体经过重排,结构变化后,与DNA
染色质的发现过程
1879年,W. Flemming提出了染色质(chromatin)这一术语,用以描述细胞核中能被碱性染料强烈着色的物质。1888年,Waldeyer正式提出染色体的命名。经过一个多世纪的研究,人们认识到,染色质和染色体是在细胞周期不同阶段可以相互转变的形态结构。
异染色质的定义
异染色质分为结构异染色质和功能异染色质两种类型。结构异染色质是指各类细胞在整个细胞周期内处于凝集状态的染色质,多定位于着丝粒区、端粒区,含有大量高度重复顺序的脱氧核糖核酸(DNA),称为卫星DNA(satellite DNA)。功能异染色质只在一定细胞类型或在生物一定发育阶段凝集,如雌性哺乳动物含一
异染色质的定义
异染色质分为结构异染色质和功能异染色质两种类型。结构异染色质是指各类细胞在整个细胞周期内处于凝集状态的染色质,多定位于着丝粒区、端粒区,含有大量高度重复顺序的脱氧核糖核酸(DNA),称为卫星DNA(satellite DNA)。功能异染色质只在一定细胞类型或在生物一定发育阶段凝集,如雌性哺乳动物