Antpedia LOGO WIKI资讯

我国科学家提出制备常温超导体“金属氢”新方法

在掌握气态、液态、固态的制备方法后,如何制备“金属氢”是科学界正努力攻关的难题。近期,山东大学赵明文教授团队提出利用碳纳米管高机械强度的特点,在碳纳米管中以相对“较低”的压力制备与保护准一维“金属氢”,并由此发展出相应的理论模型。这项理论成果日前被国际学术期刊《纳米快报》发表。 山东大学赵明文教授团队表示,由于碳纳米管具有高机械强度的特点,在其内可以形成超高密度的准一维“金属氢”。作为容器的碳纳米管,不仅可以保护稍纵即逝的“金属氢”,并能有效降低实现氢金属化的临界压力,在相对“较低”的压力下实现氢的金属化和超导特性。 科研团队介绍,基于量子力学第一性原理的分子动力学模拟显示,束缚于碳纳米管的准一维氢在163.5GPa(即163.5万倍大气压)下可以变为金属态,其超导的临界温度也接近室温。研究人员在埃利亚西伯超导理论的基础上,已发展出相应的理论模型,成功解释了准一维“金属氢”的超导特性。 物理学家尤金·维格纳与希拉德·......阅读全文

我国科学家提出制备常温超导体“金属氢”新方法

   在掌握气态、液态、固态的制备方法后,如何制备“金属氢”是科学界正努力攻关的难题。近期,山东大学赵明文教授团队提出利用碳纳米管高机械强度的特点,在碳纳米管中以相对“较低”的压力制备与保护准一维“金属氢”,并由此发展出相应的理论模型。这项理论成果日前被国际学术期刊《纳米快报》发表。  山东大学赵明

超导体可以在常温下使用吗

不可以,超导体材料的研究使用目前还仅仅局限于低温环境或高温环境,能够在常温常压条件下使用的超导材料一直未能得到开发利用。而超导材料在电力传输、远距离通讯、微信号处理、磁悬浮列车等方面的应用极为重要。因此,开发一种在常温常压条件下具有超导效果的导线,对军工、科研、生产、生活将有极为重要的意义。在常温常

全球首台常温常压储氢·氢能汽车工程样车"泰歌号"面世

  全球首台常温常压储氢·氢能汽车工程样车“泰歌号”,17日在武汉扬子江汽车厂区奔跑起来!这标志着我国在“常温常压储氢技术”上取得突破。  氢能是一种能量密度很高的清洁可再生能源,理论上可以广泛应用于各种动力设备,但难以常温常压储存是其发展的一个重要瓶颈。中国地质大学(武汉)国家首批“千人计划”专家

终结者液体金属人再现:纳米世界里常温金属当面团揉

  在科幻大片《终结者》系列中,常常出现这样的场面:阿诺德施瓦辛格掏出霰弹枪朝液体机器人射击,巨响过后,身体和脑袋被打穿了数个大窟窿的液体机器人又慢慢恢复了原形。真是打不死的“小强”!  这真的是遥远的明日科技吗?还是就在我们身边发生的事实?  东南大学孙立涛教授研究团队发现,在极小的纳米尺度下(小

轰动业界的室温超导新材料是真的吗?H-index作者发质疑

昨晚,科学界都在为室温超导的新发现而震撼。据Sciencenews报道,美国罗切斯特大学的物理学家 Ranga Dias及其团队日前在美国物理学会会议上宣布,他们找到了一种新的材料,名为三元镥氮氢体系(ternary lutetium-nitrogen hydrogen system),实现了常温超

室温超导更上一层楼 高压氢材料成重要研究方向

  自1911年超导体被人类首次发现以来,寻找能在室温条件下达到超导态的材料一直是众多科学家竞相追逐的目标。  超导体零电阻或完全抗磁性的属性,往往要在非常低的温度条件下(比如-138℃甚至更低)才可实现。因此只有将超导体的转变温度提升至室温,才意味着超导体有望实现广泛应用。  现在,已经有科学家让

哈佛实验室操作失误 世上唯一金属氢消失

  据英国《独立报》2月22日报道,哈佛大学物理学家1月曾宣布,制造出了地球上首块金属氢,这项研究引发了广泛关注,同时也引起了一些争议。但现在,由于操作失误,这块金属氢样本消失了。  自理论物理学家于1935年首次预测金属氢的存在以来,在实验室制备出金属氢成为很多研究者的梦想。根据理论预测,用足够的

我国研究人员成功合成流体金属氢

  近日,中国科学院合肥物质科学研究院固体物理研究所极端环境量子物质中心团队在极端高温高压条件下成功获得了氢和氘的金属态。相关研究成果以A Spectroscopic Study of the Insulator-Metal Transition in Liquid Hydrogen and Deu

《Nature》:人类首次“看”到氢的金属态!

  2020年1月19日,马斯克创造人类航天新壮举!空中炸毁火箭,然后成功实现载人舱逃逸。这是继回收火箭后的又一创举!用不了多久,你可能会坐着火箭,吐槽驾驶舱空间能不能再大一些。燃料箱中的燃料决定了你这次火箭旅行的行程距离和舒适度。据了解,目前我国的长征五号采用无毒无污染的液氧、液氢和煤油作为推进剂

高熵金属玻璃电化学析氢

  随着工业市场经济的高速发展,化石燃料的过度开采及使用所造成的全球生态环境危机已经成为人类命运共同体需要面临的首要挑战。今年,习近平主席在第75届联合国大会提出了我国在2030年前实现“碳达峰”、2060年前实现“碳中和”的总体战略目标。氢能,作为最具可持续性和可再生的绿色能源,将在实现碳中和道路