Antpedia LOGO WIKI资讯

11月27日《科学》杂志精选

某些藻类的增加可影响碳循环 两项新的研究报告了浮游植物丰度和性质发生的急剧变化,它们对储存过量的碳具有重要的含义。总的来说,这些研究提出,一些类型的碳密集型藻类正在繁盛地生长,它们将充当日益重要的碳泵的角色。应用深水软珊瑚骨骼中埋置的浮游植物氨基酸的同位素特征,Kelton McMahon和同事确定了在过去一千年里北太平洋浮游生物主导性变化的历史。他们的分析揭示,被太平洋存在着一个从非固氮蓝藻细菌至真核微藻主导的过渡,而在工业时代开始前后,发生了又一次向更强的固氮蓝藻细菌群的过渡。研究人员发现这两个过渡期具有显著的差异,第一次过渡花了600多年,而第二次较为近来的过渡是在不到200年中发生的。由于这些细菌中有某些充当着非常高效的碳泵,它能从大气中清除二氧化碳,因此作者们提出,一个正在发生过程当中的、朝着更能固氮的蓝藻细菌过渡的趋势或能创造一个更高效的碳泵,它们能从大气中清除日益增加的二氧化碳。 由Sara Rivero......阅读全文

蓝藻与光合细菌区别

蓝藻又名蓝绿藻(blue—green algae),是一类进化历史悠久、革兰氏染色阴性、无鞭毛、含叶绿素a,但不含叶绿体(区别于真核生物的藻类)、能进行产氧性光合作用的大型单细胞原核生物。与光合细菌区别是:光合细菌(红螺菌)进行较原始的光合磷酸化作用,反应过程不放氧,为厌氧生物,而蓝细菌能进行光合作

欧洲投资开发蓝藻生物能源

  蓝藻是一种能进行光合作用的原始单细胞生物。此前美国已有一些研究尝试利用它来生成清洁能源:利用基因改造的蓝藻进行光合作用,可以吸收大气中的二氧化碳并生成氧气和醇类有机物,而醇类有机物可以作为能源使用。   据参与项目的帝国理工学院介绍,该项目由多个大学和研究机构合作进行,计划在4年内开发一个原型系

蓝细菌和蓝藻是一个概念吗?

蓝细菌曾被称为蓝藻或蓝绿藻,是一类分布很广,含有叶绿素a,能够在光合作用时释放氧气的原核微生物。蓝细菌主要以二分裂或多分裂方式进行繁殖,少数蓝细菌可形成孢子,孢子壁厚,能抵抗不良环境。由成串细胞连成丝状的蓝细菌,在细胞链断裂时形成的片段,称之为链丝段,具有繁殖功能。蓝细菌有广泛的分布,从水生到陆生生

英国培育出可抑制蓝藻毒性的无害细菌

  英国研究人员9月7日说,他们培养出一些新型细菌,可以有效分解蓝藻释放到水中的毒素,且不会对环境造成有害影响。   英国罗伯特戈登大学研究人员在当天举行的英国“普通生物学学会”会议上报告了这一成果。他们利用节杆菌、短杆菌和红球菌等种类的细菌,培育出了约10种新型细菌,可有效分解蓝藻释放的微囊藻毒

水库蓝藻水华发生和消退后浮游细菌群落动态

  亚热带河流水库是我国重要的水生态系统,具有不可替代的服务功能,拥有独特的浮游微生物群落。然而,在全球气候变化和水体富营养化加剧的背景下,水库蓝藻水华暴发已经成为一个世界性的生态环境问题。监测蓝藻和浮游细菌群落的动态变化、研究藻菌的相互作用及控制浮游生物群落演替的关键因子,将有助于水库水质优化管理

Cell最新技术:探索内部机制的利器

这一图片演示了研究人员探索蓝藻组装的步骤  来自美国加州大学伯克利分校,能源部联合基因组研究所(DOE JGI)的研究人员首创了一种先进的可视技术,解析了几乎遍布地球每一个生态系统的一种生物:蓝藻的内部结构,这将有助于了解细菌生理作用机制,以及促进纳米科技的发展。   这一研究成果公布在11月

《Nature》:科学家捕获了蓝藻光合作用的“触角”

  研究人员帮助揭示了迄今为止最详细的重要生物“触角”的图像。  大自然已经进化出通过光合作用来利用太阳的能量的结构,但这些阳光接收器不属于植物。它们存在于被称为蓝藻的微生物中,蓝藻是地球上第一个能够吸收阳光、水和二氧化碳并将其转化为糖和氧气的生物的进化后代。  8月31日发表在《自然》(Natur

深海所在古海洋中蓝藻细菌的保存研究方面取得新进展

  近期,《前寒武纪研究》(Precambrian Research)发表了中国科学院深海科学与工程研究所深海科学研究部深海地质与地球化学研究室研究员彭晓彤课题组题为Cellular taphonomy of well-preserved Gaoyuzhuang microfossils: a wi

火星移民新希望:深海蓝藻细菌有望制造可呼吸氧气

  据国外媒体报道,忘记建造凉爽的火星栖息基地,种植食物,或者挖掘隧道。如果你无法解决在火星表面正常呼吸空气,我们所有的火星殖民计划又有什么意义呢?  目前,我们在火星上寻找稳定的氧气供应有了新的希望——蓝藻细菌(cyanobacteria)。这种细菌能够吸收二氧化碳,并在地球上一些最不适宜生命存活

大气二氧化碳增加或改变海洋基础细菌

  据物理学家组织网7月2日报道,南加州大学科学家一项最新研究称,气候变化可能会把某些构成海洋食物链基础的细菌淘汰,而那些能适应环境的特殊细菌在未来海洋中会更加繁荣昌盛。相关论文发表在6月30日的《自然·地质科学》上。   在气候变化的大环境下,一切事物都有“赢家”和“输家”。随着大气二氧化碳水平

光合作用的生物介绍

C3类植物通过C3途径固定CO2的植物称为C3植物,它们行光合作用所得的淀粉会贮存在叶肉细胞中,因为这是卡尔文循环的场所。C3类植物属于高光呼吸植物类型,光合速率较低,其种类多,分布广,多生长于暖湿条件,如大多数树木、植物类粮食、烟草等。 C4类植物通过C4途径固定CO2的植物称为C4植物,它们主要

转基因蓝藻可用于制造化学燃料

  美国加州大学戴维斯分校的化学家通过基因工程对蓝藻进行了改造,使其能生产出丁二醇,这是一种用于制造燃料和塑料的前化学品,也是生产生物化工原料以替代化石燃料的第一步。相关论文发表在1月7日的美国《国家科学院学报》上。   论文领导作者、加州大学戴维斯分校化学副教授渥美翔太(音译)说:“大部分化学原

大气二氧化碳增加或使特殊细菌在海洋中更加“猖狂”

  在气候变化的大环境下,一切事物都有“赢家”和“输家”。随着大气二氧化碳水平和全球气温的升高,科学家也越来越关心未来哪些生物会繁荣,而哪些会毁灭。   这个问题的答案是固氮蓝藻(通过光合作用获取能量的细菌,也叫“蓝绿藻”),它们将变成影响海洋所有生物的重要角色。固氮是由蓝藻等生物将空气中不活泼的氮

研究人员预测全球二氧化碳浓度升高将加剧蓝藻爆发

  华东师范大学生态与环境科学学院助理研究员吉星与荷兰阿姆斯特丹大学、荷兰皇家科学院、德国不莱梅大学合作完成一项最新研究成果。该研究从蓝藻的表型可塑性角度,创新性地将实验室数据与数学模型模拟成果相结合,预测了气候变化所导致水体二氧化碳浓度升高的情况下,有害水华蓝藻的爆发将有可能进一步加剧。  “水华

她让二氧化碳 变身可用能源

  3月23日,法国巴黎。29岁的龙冉,站在第19届“世界杰出女科学家奖”颁奖典礼的领奖台上,一袭黑色礼服,低调而端庄。每年,全世界只有5位杰出的女性科学家和15位入选该计划的年轻女性科研工作者可以站上这个领奖台。龙冉此刻站在世界瞩目的台上,入选“最具潜力女科学家计划”。  荣膺“女性诺贝尔奖”  

全球气候变化致二氧化碳浓度升高 加剧水华蓝藻爆发

   2月19日,华东师范大学生态与环境科学学院助理研究员吉星与荷兰阿姆斯特丹大学、荷兰皇家科学院、德国不莱梅大学合作,在《科学进展》上以第一作者发表题为《蓝藻的固碳表型可塑性将促进其在高CO2环境下的爆发》的研究性论文。该论文从蓝藻的表型可塑性角度,创新性地将实验室数据与数学模型模拟成果相结合,预

某些藻类的增加可影响碳循环

  两项新的研究报告了浮游植物丰度和性质发生的急剧变化,它们对储存过量的碳具有重要的含义。总的来说,这些研究提出,一些类型的碳密集型藻类正在繁盛地生长,它们将充当日益重要的碳泵的角色。应用深水软珊瑚骨骼中埋置的浮游植物氨基酸的同位素特征,Kelton McMahon和同事确定了在过去一千年里北太平洋

氧化蓝藻处理系统:吃的是蓝藻 吐的是清水

  9月11日,武汉中山公园内5000平方米人工湖暴发大量蓝藻,沿湖行走就能闻到强烈臭味。  9月9日,南昌市进贤县军山湖水质明显变差,蓝藻暴发,连村民家养的牛都不愿意喝湖水了。  9月8日,温州市政府表示,在供水覆盖500万人的珊溪水库,藻类污染程度有所趋缓。  ……  蓝藻已成为我国湖泊、河流等

青岛能源所蓝藻甲烷化与微囊藻毒素降解研究取得新进展

  近日,中国科学院青岛生物能源与过程研究所生物制氢与沼气团队研究人员袁宪正等在蓝藻厌氧消化与微囊藻毒素降解方面取得新进展,研究成果发表在最新一期的Energy & Environmental Science上。   水体富营养化及其产生的蓝藻的无害化处置,是沿湖地区所面临的一个主要环境问题,

转基因蓝藻可用于制造化学燃料

  最近,美国加州大学戴维斯分校的化学家通过基因工程对蓝藻进行了改造,使其能生产出丁二醇,这是一种用于制造燃料和塑料的前化学品,也是生产生物化工原料以替代化石燃料的第一步。相关论文发表在1月7日的美国《国家科学院学报》上。   论文领导作者、加州大学戴维斯分校化学副教授渥美翔太(音译)说:“大部分

细菌的二氧化碳培养法

  细菌的二氧化碳培养法是检验主管技师考试辅导的部分内容,以下是医学教育网对这块内容的整理,希望对考生有所帮助:  有些细菌初次分离培养时须置5%~l0à2环境才能生长良好,如脑膜炎奈瑟菌、淋病奈瑟菌,牛布鲁菌等。常以下列方法供给C02.  1.二氧化碳培养箱:是一台特制的培养箱,既能调节C02的含

蓝藻人造叶片系统让人类移民火星成为可能

  探索浩瀚宇宙,是全人类的共同梦想。前不久,科幻电影《流浪地球》的“爆红”,再次激起人们对太空探索的兴趣。然而,面对深空探索,人类始终面临一个重要难题——如何在浩瀚的太空中,为宇航员或太空旅客、移民者提供一个长期、稳定的生命保障系统?  近日,在西北工业大学生态与环境保护研究中心的合成生物学实验室

蓝藻的生物毒性研究

图1. 实验室条件下进行蓝藻的培养。 由蓝绿藻类原核生物所产生的具有生物活性的次级物质,日渐成为制药业感兴趣的原料,但与此同时,其潜在的生物毒性可能对环境和食品产生危害,关于它们的鉴定工作亦非轻而易举之事。 蓝绿藻类原核生物(通常亦称蓝藻)指的是具有光合活性的细菌,主要生长于海洋

蓝细菌的主要价值

蓝藻是最早的光合放氧生物,对地球表面从无氧的大气环境变为有氧环境起了巨大的作用。有不少蓝藻(如鱼腥藻)可以直接固定大气中的氮(原因:含有固氮酶,可直接进行生物固氮),以提高土壤肥力,使作物增产。还有的蓝藻为人们的食品,如著名的发菜和普通念珠藻(地木耳)、螺旋藻等。据物理学家组织网报道,美国加州大学戴

科学家提出基因工程蓝藻制备优质太阳能生物燃料设想

  6月1日,Biotechnology Advances在线发表了中科院青岛生物能源与过程研究所吕雪峰研究员的综述文章A Perspective: Photosynthetic Production of Fatty Acid-Based Biofuels in Genetical

蓝藻门、裸藻门、黄藻门、硅藻门鉴定 ——蓝藻门鉴定

实验材料色球藻属念珠藻属颤藻属藻类试剂、试剂盒I-KI 溶液0.1%甲基蓝溶液浓KOH溶液仪器、耗材显微镜镊子解剖针载玻片盖玻片滴管培养皿吸水纸实验步骤蓝藻是最原始最古老的光合自养原植体植物。细胞无核膜、核仁及其他细胞器,在细胞中央具有核物质,属于原核生物。蓝藻植物体多为蓝绿色,含叶绿素 a 、藻蓝

光合作用生物的具体介绍

  C3类植物  通过C3途径固定CO2的植物称为C3植物,它们行光合作用所得的淀粉会贮存在叶肉细胞中,因为这是卡尔文循环的场所。C3类植物属于高光呼吸植物类型,光合速率较低,其种类多,分布广,多生长于暖湿条件,如大多数树木、植物类粮食、烟草等。 [3]  C4类植物  通过C4途径固定CO2的植物

光合作用的生物有哪些?

C3类植物通过C3途径固定CO2的植物称为C3植物,它们行光合作用所得的淀粉会贮存在叶肉细胞中,因为这是卡尔文循环的场所。C3类植物属于高光呼吸植物类型,光合速率较低,其种类多,分布广,多生长于暖湿条件,如大多数树木、植物类粮食、烟草等。 C4类植物通过C4途径固定CO2的植物称为C4植物,它们主要

青岛能源所在光驱固碳蓝细菌合成蔗糖研究中取得进展

  蓝细菌,又称蓝藻或蓝绿藻,是地球上最古老的微生物之一。它们通过植物型光合作用,将二氧化碳固定并转化为各类碳水化合物。研究发现,很多蓝细菌在高盐环境下在细胞内合成并积累蔗糖来抵抗逆境。利用这一生理特点,发展蓝细菌细胞工厂进行糖类分子的合成和分泌,将二氧化碳和太阳能直接转化为蔗糖产品,是具有潜力的新

细菌能用氢气和二氧化碳产生电力

  2013年5月18日至21日在科罗拉多州丹佛召开的美国微生物学会(American Society for Microbiology)第113届大会上,美国马萨诸塞州麻省理工大学的研究人员在大会上称已经研制出一株能够生产电子的细菌,它们可以使用氢气作为其唯一的电子供体和二氧化碳作为其唯一碳源