天宫一号将有哪些科学实验?

借助太空特殊的环境,利用空间飞行器的特殊平台,科学家们可以开展许多地面上无法实现的科学实验和研究活动。实际上,这也是人类探索太空、建立空间站等航天平台的终极目标之一。 在我国载人航天工程中,空间应用系统的任务就是充分利用特殊的空间环境、空间资源,在飞行器提供的条件下开展各项空间科学实验和应用研究。 据了解,此次天宫一号和神舟八号交会对接任务中,天宫一号上主要安排了空间材料科学领域和空间环境探测领域的科学应用任务。 空间材料科学实验 据空间应用系统专家、中国科学院物理研究所副所长冯稷介绍,此次天宫一号上要执行的空间材料科学研究是胶体晶体生长实验,也是目前在国际上首次以这种形式探索空间胶体晶体生长的规律。主要达到两个目的:一是在空间的环境中,了解胶体晶体怎样形成;二是了解其形成和形态在外部条件控制下是怎样变化的。 之所以在太空做这样的实验,是因为到了空间飞行器上,在微重力甚至无重力条件下,与在地面上相比物理规......阅读全文

光电探测器的主要应用

光电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外

光电探测器的主要应用

光电导探测器photoconductive detector利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外

气相色谱在材料科学领域的应用

气相色谱法在聚合物分析方面的应用1.单体分析;2.添加剂分析;3.共聚物组成分析;4.聚合物结构表征;5.聚合物中的杂质分析;6.热稳定性研究。

《行业应用》金相显微镜在材料科学相关领域的应用

伴随着全球经济进入新常态,国内材料行业必定在供给侧改革的大趋势下迎来行业的春天。从最传统的黑色钢铁冶炼到最热门的纳米材料制造无不蕴藏着巨大的商机。那么成品材料的质量鉴定就成为了行业突破的首要问题。金相学利用了光学金相显微镜和体视显微镜,通过对材料显微结构和宏观断口结构的光学放大观察,进行记录表征分析

拉曼光谱应用(三)在材料科学研究中的应用

拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。包括:(1)薄膜结构材料拉曼研究:拉曼光谱已成CVD(化学气相沉积法)制备薄膜的检测和鉴定手段。拉曼可以研究单、多、微和非晶硅结构以及硼化非晶硅、氢化非晶硅、金刚石、类金刚石等层状薄膜的结构。(2)超晶格材料研究

沃特世材料科学应用方案系列讲座

一、聚焦化妆品安全,助力美丽背后的安全  化妆品是以清洁、保护、美化、修饰为目的的日用化学工业产品。如果出现质量或安全问题,将带来不可估量的经济损失,并且影响到品牌的形象和忠诚度。基于《化妆品监督管理条例》,原料和各种应用部位的产品均需要保障安全性。  沃特世将针对《化妆品安全技术规范》及其补充修订

微阵列在材料科学研究中的应用

微阵列在材料科学研究中的国内主要发展:(1)阵列构筑技术基于氧化铝模板,通过气相法、电沉积、原位溶胶-凝胶等技术,构筑了各种纳米线、纳米管、异质结纳米线等的有序排列的阵列体系。发展了催化诱导CVD技术,在孔内预先置入金属纳米颗粒作为催化剂,通过CVD过程沿孔内生长出单晶Si,GaN,等纳米线阵列体系

手机探测器的应用领域

  手机探测器早期只应用于军事领域,随着国内外社会对这一技术的需求逐渐升高和国际上出现的一些新局势,开始有了新应用场合。  监狱系统  监狱服刑的囚犯违法使用手机,最早的手机只用来与外界通电话,后来一些较好的手机有了蓝牙功能,犯人在监区内楼上楼下便能通过蓝牙连接,互传文件。尤其是随着智能手机和3G卡

光电探测器的分类和应用

  分类  光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。  应用  光电探测器件的应用选择,实际上是应用时的一些事项或要点。在很多要求不太严格的应用中,可采用任何一种光电探测器件。不过在某些情况下

火花探测器的系统原理是怎样的?

   火花检测系统是一个探测器,用来识别危险的粒子(点燃源),当一个危险的火花被发现,熄灭装置或自动熄灭;    抑制住灾情的发生,这个功能是由一个控制单元的控制来实现的。因此火花探测器也被称为“火灾预防系统”。    火花探测系统的安装可以防止火灾和粉尘爆炸带来的惨痛损失。    产品在工业

金相显微镜在材料科学相关领域的应用

金相学作用钢热处理工艺的研究:钢的热处理原理是以钢在加热和冷却过程中的相变为依据的,金相技术则是相变研究的重要实验手段。形状记忆合金的研制:形状记忆合金也是通过金相分析而发现的。产品的质量控制:产品生产过程中的每一个环节,从原材料的验收,加工工艺的控制,直至半成品及成品质量的评定等。失效分析:机械装

金相显微镜在材料科学相关领域的应用

伴随着全球经济进入新常态,国内材料行业必定在供给侧改革的大趋势下迎来行业的春天。从最传统的黑色钢铁冶炼到最热门的纳米材料制造无不蕴藏着巨大的商机。那么成品材料的质量鉴定就成为了行业突破的首要问题。金相学利用了光学金相显微镜和体视显微镜,通过对材料显微结构和宏观断口结构的光学放大观察,进行记录表征分析

拉曼光谱在材料科学研究中的应用

  拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。包括:  (1)薄膜结构材料拉曼研究:拉曼光谱已成CVD(化学气相沉积法)制备薄膜的检测和鉴定手段。拉曼可以研究单、多、微和非晶硅结构以及硼化非晶硅、氢化非晶硅、金刚石、类金刚石等层状薄膜的结构。  (2)超

超薄切片技术在材料科学研究中的应用

超薄切片技术是一种常见的透射电镜制样技术,在材料科学领域有着非常广泛的应用,尤其适合有机高分子材料和无机粉体材料,可以非常简单方便的获得纳米级切片,供透射电镜观察;对金属材料和其他无机材料也有一定的应用。另外,因为这一技术也可以非常方便的获得样品的截面信息,因此在扫描电镜和原子力显微镜制样方面也有一

半导体探测器的应用领域

随着科学技术不断发展需要,科学家们在锗锂Ge(Li)、硅锂Si(Li)、高纯锗HPGe、金属面垒型等探测器的基础上研制出许多新型的半导体探测器,如硅微条、Pixel、CCD、硅漂移室等,并广泛应用在高能物理、天体物理、工业、安全检测、核医学、X光成像、军事等各个领域。世界各大高能物理实验室几乎都采用

MCT红外探测器在FTIR高端应用

红外光谱仪主要有两种类型:色散型和干涉型(傅立叶变换红外光谱仪FTIR)。色散型红外光谱仪是以棱镜或光栅作为色散元件,这类仪器的能量受到严格限制,扫描时间慢,且灵敏度、分辨率和准确度都较低。随着计算方法和计算技术的发展,20世纪70年代出现新一代的红外光谱测量技术及仪器——傅立叶变换红外光谱仪(FT

空气采样探测器是属于消防系统吗

是属于消防系统的。空气采样探测器规范名称是吸气式感烟火灾探测器,是火灾自动报警系统里的一类设备。

电镜制样材料科学核心电镜制样技术及其应用

电镜制样-材料科学核心电镜制样技术及其应用

拉曼光谱技术在材料科学研究中的应用

  拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。包括:   1、薄膜结构材料拉曼研究:拉曼光谱已成CVD化学气相沉积法、制备薄膜的检测和鉴定手段。拉曼可以研究单、多、微和非晶硅结构以及硼化非晶硅、氢化非晶硅、金刚石、类金刚石等层状薄膜的结构。   2、

alphalas-光电探测器的应用领域宽广

  alphalas 光电探测器广泛应用于智能手机、空间站等领域的系统和设备中,但传统的光电探测器仅对特定狭频带宽内的光源敏感,这就给产品带来了诸多困扰。科学家探索出了解决方案。研究人员发表的文章指出,紫外线处理可将传统的光电探测器转变为高带宽设备。现在,alphalas 光电探测器广泛应用

粒子探测器的应用领域及特点

    粒子探测器是全球领先的粒子追踪探测器和粒子追迹探测器,它基于Medipix2/Timepix technology技术的像素探测器,它能够实现零背景噪音成像,非常适合粒子追踪和辐射监测,单光子计数等应用。    粒子探测器,是在物理实验、原子核物理学等领域用于探测、跟踪和鉴别高能粒子的一种物

手机探测器的特色及应用领域

  产品特色  手机探测器有别于手机信号探测器,其可检测开机和关机状态下的手机,是安防领域和保密系统的常用探测设备。  应用领域  手机探测器早期只应用于军事领域,随着国内外社会对这一技术的需求逐渐升高和国际上出现的一些新局势,开始有了新应用场合。  监狱系统  监狱服刑的囚犯违法使用手机,最早的手

空气采样器系统包括探测器和采样网管

 空气采样器又叫吸气式感烟火灾探测器或空气采样火灾探测器就是通过空气采样管把保护区的空气吸入探测器进行分析从而进行火灾的早期预警。  空气采样器系统包括探测器和采样网管。探测器由吸气泵、过滤器、激光探测腔、控制电路、显示电路等组成。吸气泵通过PVC管或钢管所组成的采样管网,从被保护区内连续采集空气样

原子力显微镜在材料科学研究中的应用

原子力显微镜在材料科学研究中的应用AFM 是利用样品表面与探针之间力的相互作用这一物理现象,因此不受STM 等要求样品表面能够导电的限制,可对导体进行探测,对于不具有导电性的组织、生物材料和有机材料等绝缘体,AFM 同样可得到高分辨率的表面形貌图像,从而使它更具有适应性,更具有广阔的应用空间。AFM

现代扫描电镜的发展及其在材料科学中的应用

1 扫描电镜原理 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。扫描电镜是

原子力显微镜在材料科学研究中的应用

       AFM 是利用样品表面与探针之间力的相互作用这一物理现象,因此不受STM 等要求样品表面能够导电的限制,可对导体进行探测,对于不具有导电性的组织、生物材料和有机材料等绝缘体,AFM 同样可得到高分辨率的表面形貌图像,从而使它更具有适应性,更具有广阔的应用空间。AFM 可以在真空、超高真

现代扫描电镜的发展及其在材料科学中的应用

 介绍了扫描电子显微镜的工作原理和特点,特别是近几年发展起来的环境扫描电镜(ES2EM)及其附带分析部件如能谱仪、EBSD装置等的原理、特点和功能,并结合钢铁材料研究展望了其应用前景。  1、扫描电镜原理  扫描电镜(ScanningElectronMicroscope,简写为SEM)是一个复杂的系

我国首部全面系统论述核材料科学与工程的专著在京首发

10月28日,清华大学“985工程”一期项目、我国第一部全面系统论述核材料科学与工程的专著《核材料科学与工程》在京首发。师昌绪、李恒德等材料、核材料领域的14位院士,相关专家、教授和编者,国家新闻出版署领导,化学工业出版社负责人等70余人参加了首发式。 2000年年底,我国著名材料专家、清华大学李恒

半导体探测器的趋势和应用领域

  趋势  上述各种γ射线探测器均须在低温下工作。人们日益注意探索可在常温下探测γ射线的半导体材料。一些原子序数较大的化合物半导体,如碲化镉、砷化镓、碘化汞、硒化镉等,均已用于制备X、γ射线探测器,并已取得不同程度的进展。  应用领域  随着科学技术不断发展需要,科学家们在锗锂Ge(Li)、硅锂Si

基于SDD探测器X荧光仪的应用探讨

本文分析不锈钢样品并进行主成分Cr、Ni、Fe含量研究,通过Pu-238同位素源和微功耗X光管激发对比,以及SDD和Si-PIN探测器探测对比,评价SDD探测器在不锈钢主成分X射线荧光分析中的应用效果。实验中Pu-238同位素源采用双源对称布置,总活度为1.48×109Bq;X光管为Rh靶端窗结构,