中国科大在高效去除氢气中微量CO研究方面取得进展

氢能是未来最理想的一种清洁能源。氢燃料电池汽车以氢气为燃料,能量转化效率高,清洁零排放,是未来新能源清洁动力汽车的主要发展方向之一。然而氢燃料电池汽车的推广目前仍然困难重重,其中一个关键难题是氢燃料电池电极的CO中毒问题。现阶段,氢气主要来源于甲醇和天然气等碳氢化合物的水蒸汽重整、水煤气变换反应等,通常含有0.5%~2%的微量CO。作为氢燃料电池汽车的“心脏”,燃料电池电极极易被CO杂质气体毒化,从而致使电池性能降低和寿命缩短,严重限制了该类汽车的推广。富氢氛围CO优先氧化(PROX)是车载去除氢气中微量CO的最理想方式。然而现有PROX催化剂工作温度相对较高(室温以上)且区间窄,无法在寒冷条件下为氢燃料电池频繁冷启动过程中提供有效保护。 针对该技术难题,中国科学技术大学教授路军岭、韦世强、杨金龙等课题组密切合作,利用原子层沉积技术(ALD),首次设计出一种新型Fe1(OH)x-Pt单位点界面催化剂结构(图1),并在低温高......阅读全文

金属纳米颗粒可清除口腔细菌

  由莫斯科国立科技大学(NUST MISIS)与维亚茨基国立大学专家共同研制的新型牙齿清洁剂,可以从根本上改变口腔的微观环境,并消除在牙齿上形成的菌斑层,其效果已在基洛夫国家医学科学院口腔研究室的临床实践中得到证实。  实验中,志愿者使用这种含有金属纳米颗粒的新型牙齿清洁剂一个月后,口腔中菌群数量

国家纳米中心等在金属纳米颗粒电子器件研究中获进展

  电子元器件的多功能化是应用电子技术发展的重要趋势,因而非硅基材料越来越受到研究人员的重视。其中,由于小尺寸效应其性质有别于本体材料的纳米颗粒是一个最典型的研究对象。采用半导体量子点构建的太阳能电池的效率已经有了大幅度的提升,晶体管的加工性能也得到了极大的改善,光电探测器的灵敏度至今还未被超越。金

多元金属纳米颗粒管及复合纳米催化剂的设计取得进展

中科大多元金属纳米颗粒管及复合纳米催化剂的设计与制备取得系列进展  随着环境意识的增强和对有限自然资源认识的加深,为了减少对化石能源等不可再生资源的依赖,燃料电池作为高效和低污染发电装置研究受到高度关注和重视。但是,燃料电池催化剂成本高、反应活性低和稳定性差等缺点仍然严重制约其商业化和广泛应用。  

23特殊形状纳米颗粒/金纳米星/金纳米立方/银纳米立方/金纳米笼/钯纳米颗粒

23特殊形状纳米颗粒/金纳米星/金纳米立方/银纳米立方/金纳米笼/钯纳米颗粒百欧泰生物提供多种各粒径的水溶性金纳米颗粒、油溶性金纳米颗粒、PEG化球金纳米颗粒及特殊形状金纳米颗粒、荧光标记金纳米颗粒、还可以根据客户要求提供定制服务。TypeCat NoDiameterLength(nm)ODSize

碳包覆过渡金属基纳米颗粒合成方面取得进展

  近期,中国科学院合肥物质科学研究院固体物理研究所液相激光加工与制备实验室在碳包覆过渡金属基纳米颗粒合成方面取得进展,相关成果发表在ACS Applied Nano Materials (DOI: 10.1021/acsanm.8b01541)杂志上。  近年来,碳包覆纳米材料因其独特的物理与化学

纳米颗粒跟踪分析技术对药物输送纳米颗粒的观察

纳米颗粒在药物输送中的应用持续迅猛发展。 纳米颗粒可提供优良的药代动力学特性、长效和缓释以及特定细胞、组织或器官的靶定。 可利用的能用于疾病治疗的新生物活性化合物的发现速度在不断递减,这推动了人们对纳米颗粒药物输送的关注。 每年进入市场的新药越来越少,利用纳米颗粒的多用途和多功能结构进行药物输送的兴

利用纳米颗粒跟踪分析(NTA)技术对药物输送纳米颗粒...

利用纳米颗粒跟踪分析(NTA)技术对药物输送纳米颗粒进行直接观察、测定大小和计数简介 纳米颗粒在药物输送中的应用持续迅猛发展。 纳米颗粒可提供优良的药代动力学特性、长效和缓释以及特定细胞、组织或器官的靶定。 可利用的能用于疾病治疗的新生物活性化合物的发现速度在不断递减,这推动了人们对纳米颗粒

10-金纳米颗粒/Gold-nanoparticals/纳米金

10 金纳米颗粒/Gold nanoparticals/纳米金金纳米粒子是一种经典的纳米粒子,它的高催化活性和能通过自组装形成纳米结构的特点,使其应用在高级材料的制造上。自组装技术是指通过分子间特殊的相互作用,如静电吸引、氢键、疏水性缔合等组装成有序的纳米结构,实现高性能化和多功能化。TypeCat

纳米颗粒识别血管斑块

  现行医疗技术中,医生只能识别由于血小板聚集而变窄的血管。方法是从手臂、腹股沟或颈部的血管处开一个切口植入导管,从导管注入染色剂,使X射线显示狭窄部位。日前,由凯斯西储大学科学家率领的一组研究人员开发了一种多功能纳米颗粒,能使磁共振成像(MRI)定位动脉粥样硬化引起的血管斑块。此项技术向无创性

纳米颗粒的分散技术

    颗粒分散是指粉体颗粒在液相介质中分离散开并在整个液相中均匀颁的过程,根据分散方法的不同,可分为以下几种:一、机械搅拌分散主要借助外佛罗里达剪切力或撞击力等机械能,使纳米粒子在介质中充分分散,通过对分散体系施加机械力,引起体系内物质的物理、化学性质变化以及伴随的一系列化学反应来达到分散目的,但

纳米颗粒的分散技术

颗粒分散是指粉体颗粒在液相介质中分离散开并在整个液相中均匀颁的过程,根据分散方法的不同,可分为以下几种:一、机械搅拌分散主要借助外佛罗里达剪切力或撞击力等机械能,使纳米粒子在介质中充分分散,通过对分散体系施加机械力,引起体系内物质的物理、化学性质变化以及伴随的一系列化学反应来达到分散目的,但是研磨过

可重复使用的纳米颗粒涂层海绵去除水中的重金属

  于一种实验性的新海绵可以让从水中去除重金属污染物的过程比以往更容易。只需一次处理,该设备就能将受污染的水降低到安全可饮用的水平。在之前两项研究的基础上,伊利诺伊州西北大学的科学家正在开发这项技术。  研究人员开始使用一种廉价的市售纤维素海绵,并将其置于掺有锰的戈壁石纳米颗粒的泥浆中。然后他们将其

新型金属钌聚合物纳米颗粒开创癌症治疗的新方法

  1969年,顺铂的发现激起了许多人对金属抗肿瘤药物的关注。长期使用铂类药物所产生的严重副作用及耐药性,使得一些研究人员逐渐将目光转移到开发其他种类的金属抗癌药物。钌类金属化合物是较具前景的一类,其中光敏型钌配合物因其较高的选择性被认为是最有可能脱颖而出的抗癌新星。但是小分子的钌配合物体积小、易清

基于纳米颗粒的疫苗平台

  科研人员报告了一种基于纳米颗粒的疫苗平台,它能够带来针对多种病原体的免疫力。对正在进化的病原体和突然的疾病暴发的有效响应需要安全而有效的疫苗,能够迅速且在床边按需生产。Daniel Anderson及其同事开发了一个基于纳米颗粒的疫苗平台,这些纳米颗粒是由大的重复分支的分子组成,它们聚集并俘获了

纳米颗粒如何加速医学研究?

  近年来,科学家们在很多研究中都利用纳米颗粒来进行疾病的治疗和诊断等,比如有研究人员就利用纳米颗粒开发出了能检测胰腺癌的新型生物传感器;那么近期纳米颗粒还在哪些方面推动了医学研究呢?本文中,小编对相关研究进行了整理,分享给大家!  【1】Nat Biotechnol:重磅!科学家开发出能携带CRI

定点“爆破”的纳米颗粒药物

  以纳米药物制药剂为基础的纳米微粒药物输送技术是当今药学的重要发展方向之一。虽然纳米技术问世不久,但在医药领域,致力于分子水平上的研究已有较长历史。本文介绍利用纳米颗粒为载体实现对药物的选择性释放,用于肺肿瘤的治疗。  纳米粒子作为载体的药物可以用来防治肺癌:来自德国的NIM和

成都生物所金纳米颗粒可视化检测重金属离子研究获进展

反应过程  随着纳米技术的飞速发展和纳米产业的不断扩大,许多纳米材料不断地涌现出来。由于金纳米颗粒具有较高的摩尔吸光系数和依靠距离可变的光学性质,它在化学、物理和生物等领域已有广泛的应用,其中可视化检测则是金纳米颗粒重要的应用之一。  中国科学院成都生物研究所天然产物研究中心邵华武研

Science:在二氧化硅载体上合成超小双金属纳米颗粒

  南卡罗莱纳大学J. R. Regalbuto(通讯作者)设计了一种相对简单、高效、普适的方法制备高度分散、良好合金化的双金属纳米颗粒,该方法可实现贵金属和碱金属(Pt、Pd、Co、Cu、Ni)中任意两种金属的共同吸附,制造出分散均匀,合金化均匀,颗粒平均尺寸为0.9-1.4纳米的负载型双金属纳米

单颗粒ICPMS应用-|-西红柿吸收金纳米颗粒

  伴随着工程纳米材料在各个不同产品和过程的使用不断增加,人们开始对纳米颗粒的释放对环境和人类健康造成的影响产生了担心。要研究纳米颗粒对环境的影响,就必须探索纳米颗粒如何通过在水和土壤中的迁徙而被植物吸收的。如果纳米颗粒最终为食品作物所吸收,那么人类就直接面临ENPs释放造成的影响。   这项研究

单颗粒ICPMS应用:西红柿吸收金纳米颗粒

伴随着工程纳米材料在各个不同产品和过程的使用不断增加,人们开始对纳米颗粒的释放对环境和人类健康造成的影响产生了担心。要研究纳米颗粒对环境的影响,就必须探索纳米颗粒如何通过在水和土壤中的迁徙而被植物吸收的。如果纳米颗粒最终为食品作物所吸收,那么人类就直接面临ENPs释放造成的影响。 这项研究工作的目标

纳米颗粒有望治疗心肌梗塞

  《生物医学光学快报》刊文称,俄罗斯科学家发现一种能够在心脏组织破损处聚集的纳米颗粒,可用于评估心梗的严重程度,未来还可用其将药物直接送至心脏。  圣彼得堡国立巴甫洛夫医科大学专家德米特里·索宁解释称:“还需进一步研究这种纳米颗粒的生物学分布、毒性及对心脏保护的有效性,以确定其可用于临床治疗。” 

新型光镊可捕获纳米颗粒

  光镊是一项正在飞速发展的技术,近年来,围绕光镊的新型应用层出不穷。光镊是用高度聚焦的激光束的焦点捕获粒子,从而使研究人员无需任何物理接触即可操纵物体的技术。目前,光镊已被用于捕获微米级的物体,然而研究人员日益渴望将光镊的应用扩展到纳米级粒子上去。由法国雷恩第一大学Janine Emile和Oli

纳米颗粒穿越胎盘屏障有玄机

  近日,国家纳米科学中心赵宇亮和聂广军课题组研究发现,一定尺度的金纳米颗粒可以显著地通透母鼠胎盘屏障,进入胎儿体内;纳米颗粒的特性,如纳米表面修饰和纳米尺寸等,以及母体和胎儿自身的生理特征,如胚胎发育阶段等,都是决定纳米颗粒穿越胎盘屏障进入胎儿能力强弱的重要因素。该成果日前发表于《自

油墨中纳米颗粒的表征方法

表征某一特定过程种颗粒体系的特性时不仅需要考虑到多方面因素的影响还要考虑到最终的使用。表征颗粒体系时必须要包括但不仅仅局限于以下几点:粒径分布、表面积、孔隙率、形状和颗粒的带电性。实际上,将所有的表征参数结合起来可以让我们对颗粒有更清晰的认识。通过粉体流动性、分散性、药物疗效、干燥涂层效果、悬浮稳定

月球土壤怪异之谜:内含纳米颗粒

  借助于同步加速器纳米X线体层照相术,澳大利亚土壤学家马莱克-扎比克对月球土壤样本进行了研究,最后揭示出月球土壤一些怪异特征背后的机械学原理。纳米X线体层照相术使用透射X光显微镜,用于研究纳米材料,能够拍摄纳米颗粒的3D图像。   1969年,“阿波罗11”号宇航员登上月球。在月球尘土层中,他们发

金属所纳米碳非金属催化本质研究取得进展

  纳米碳材料在烷烃的氧化脱氢等反应中展现出反应活性高、烯烃产物选择性高、催化活性保持时间长等优势,其作为一种可再生的环境友好催化剂,可以替代传统的金属及其氧化物催化剂直接应用于烷烃催化转化等相关反应中。经过近几年的迅猛发展,纳米碳催化领域在新型催化剂的开发制备、新颖催化反应体系的建立等方面获得了多

避免金属颗粒进入大脑有妙招

   英国兰卡斯特大学的Barbara Maher发现,人们大脑中的氧化铁小粒子或来自于呼吸到的交通烟雾。  这些磁性粒子已经证明与阿尔茨海默氏症存在关联,并认为会生成能够杀死神经细胞的活性化合物。人们已经知道人脑中存在磁性粒子,但是在此之前大家都认为它们来自于自然来源。  Maher的团队发现,这

重金属离子纳米检测技术

反应过程 随着纳米技术的飞速发展和纳米产业的不断扩大,许多纳米材料不断地涌现出来。由于金纳米颗粒具有较高的摩尔吸光系数和依靠距离可变的光学性质,它在化学、物理和生物等领域已有广泛的应用,其中可视化检测则是金纳米颗粒重要的应用之一。 中国科学院成都生物研究所天然产物研究中心邵华武研

什么是纳米晶非晶态金属

它是一种特殊用途的金属,粒径已经达到纳米级,但是没有固定的形态结构,纳米非晶态金属比纳米晶态金属有更大的比表面积。因此其在催化剂行业用途比较广泛。如纳米镍非晶态颗粒,是一种高效的燃料催化剂。

单颗粒ICPMS在纳米颗粒检测中的应用

随着纳米颗粒在消费品中的使用越来越广泛,纳米颗粒与人体的接触与迁移也越来越受到关注,并由此带来一个问题:消费品中的纳米颗粒会迁移到人体中吗?人们主要通过身体接触来与这些产品发生互动,所以有必要了解纳米颗粒是如何通过身体接触实现向人体迁移的。本文探讨了纳米材料表面上的纳米颗粒如何迁移到抹布上,并集中讨