23特殊形状纳米颗粒/金纳米星/金纳米立方/银纳米立方/金纳米笼/钯纳米颗粒

23特殊形状纳米颗粒/金纳米星/金纳米立方/银纳米立方/金纳米笼/钯纳米颗粒百欧泰生物提供多种各粒径的水溶性金纳米颗粒、油溶性金纳米颗粒、PEG化球金纳米颗粒及特殊形状金纳米颗粒、荧光标记金纳米颗粒、还可以根据客户要求提供定制服务。TypeCat NoDiameterLength(nm)ODSize金纳米笼ABZ-340 nm - 100nmN/A110 ml中空金纳米壳ABZ-4-5050 nm - 150nmN/A110 ml金纳米三角片ABZ-5-140140 nm±25 nmN/A110 ml金纳米星ABZ-7N/AN/A1.4 - 1.510 ml金银纳米梭子ABZ-8-1515 nmN/AN/A10 ml金纳米链ABZ-9-202055210 ml金纳米双锥ABZ-9-35-135, 45105, 110210 ml金纳米六角板ABZ-11-5050 nmN/A110 ml金纳米立方ABN-1......阅读全文

23特殊形状纳米颗粒/金纳米星/金纳米立方/银纳米立方/金纳米笼/钯纳米颗粒

23特殊形状纳米颗粒/金纳米星/金纳米立方/银纳米立方/金纳米笼/钯纳米颗粒百欧泰生物提供多种各粒径的水溶性金纳米颗粒、油溶性金纳米颗粒、PEG化球金纳米颗粒及特殊形状金纳米颗粒、荧光标记金纳米颗粒、还可以根据客户要求提供定制服务。TypeCat NoDiameterLength(nm)ODSize

10-金纳米颗粒/Gold-nanoparticals/纳米金

10 金纳米颗粒/Gold nanoparticals/纳米金金纳米粒子是一种经典的纳米粒子,它的高催化活性和能通过自组装形成纳米结构的特点,使其应用在高级材料的制造上。自组装技术是指通过分子间特殊的相互作用,如静电吸引、氢键、疏水性缔合等组装成有序的纳米结构,实现高性能化和多功能化。TypeCat

采用纳米颗粒物追踪分析技术进行纳米金测定

引用纳米金胶通常用于多种用途,例如:透射电子显微镜(TEM)/扫描电子显微镜(SEM)分析,作为免疫抗体和生物感应器的抗体/蛋白质标签,作为催化剂,以及与聚合材料混合时作为生物支架。 背景纳米颗粒物追踪分析技术可以在液态悬浮中直接观测并检测纳米颗粒的粒径。这种逐个颗粒的可视化和分析能力可以克服一些技

采用纳米颗粒物追踪分析技术进行纳米金测定

引用纳米金胶通常用于多种用途,例如:透射电子显微镜(TEM)/扫描电子显微镜(SEM)分析,作为免疫抗体和生物感应器的抗体/蛋白质标签,作为催化剂,以及与聚合材料混合时作为生物支架。 背景仪器提供了独一无二的功能,可以在液态悬浮中直接观测并检测纳米颗粒的粒径。这种逐个颗粒的可视化和分析能力可以克服一

苏州纳米构建金纳米棒@金纳米粒子手性螺旋超结构

  等离子体纳米粒子及其组装结构因为优异的光学特性在纳米科技中具有广泛应用,如超材料、生物传感器、光电器件等。精准构建等离子体纳米结构对于光学特性的深入研究意义重大,而精确调控等离子体纳米粒子的表面功能性质则是进一步获得复杂自组装体系的关键。目前借助各种物理和化学方法,可在纳米粒子表面的一定区域范围

金纳米颗粒有望提升癌症药物疗效

  金作为一种贵金属在金融和首饰行业应用广泛,英国和西班牙一项最新联合研究7日说,通过技术手段还可以将金纳米颗粒应用在疾病治疗上,以提升癌症药物的疗效,降低副作用。  在实验中,研究人员将金纳米颗粒包裹在一个特殊微型化学装置中,然后将它植入斑马鱼脑部,并有针对性地催化了一次化学反应,证明这种能力可以

《科学》:金纳米颗粒微观结构首次得到揭示

“这是一项应该被写入教科书的重要发现”  纳米颗粒的广泛应用并不意味着科学家对它们的微观结构了如指掌。美国科学家的一项最新研究,首次揭开了科研中经常用到的一种金纳米颗粒的神秘面纱。相关论文以封面文章的形式发表在10月19日的《科学》杂志上。 由于金的活动性弱且对空气和光线都不敏感,实验室中经常用金

单颗粒ICPMS应用-|-西红柿吸收金纳米颗粒

  伴随着工程纳米材料在各个不同产品和过程的使用不断增加,人们开始对纳米颗粒的释放对环境和人类健康造成的影响产生了担心。要研究纳米颗粒对环境的影响,就必须探索纳米颗粒如何通过在水和土壤中的迁徙而被植物吸收的。如果纳米颗粒最终为食品作物所吸收,那么人类就直接面临ENPs释放造成的影响。   这项研究

单颗粒ICPMS应用:西红柿吸收金纳米颗粒

伴随着工程纳米材料在各个不同产品和过程的使用不断增加,人们开始对纳米颗粒的释放对环境和人类健康造成的影响产生了担心。要研究纳米颗粒对环境的影响,就必须探索纳米颗粒如何通过在水和土壤中的迁徙而被植物吸收的。如果纳米颗粒最终为食品作物所吸收,那么人类就直接面临ENPs释放造成的影响。 这项研究工作的目标

苏州纳米所利用DNA折纸术构建金纳米棒

  等离子体纳米粒子及其组装结构因为优异的光学特性在纳米科技中具有广泛应用,如超材料、生物传感器、光电器件等。精准构建等离子体纳米结构对于光学特性的深入研究意义重大,而精确调控等离子体纳米粒子的表面功能性质则是进一步获得复杂自组装体系的关键。目前借助各种物理和化学方法,可在纳米粒子表面的一定区域范围

纳米金粒径计算公式

质量÷197(金的摩尔质量)×1000。纳米金即指金的微小颗粒,其直径在1~100nm,具有高电子密度、介电特性和催化作用,能与多种生物大分子结合,且不影响其生物活性。其中纳米金粒径计算公式是:质量÷197(金的摩尔质量)×1000,相对于灵敏度较低的CA和TLC方法,这类灵敏度较高,但操作技术要求

纳米金粒径计算公式

质量÷197(金的摩尔质量)×1000。纳米金即指金的微小颗粒,其直径在1~100nm,具有高电子密度、介电特性和催化作用,能与多种生物大分子结合,且不影响其生物活性。其中纳米金粒径计算公式是:质量÷197(金的摩尔质量)×1000,相对于灵敏度较低的CA和TLC方法,这类灵敏度较高,但操作技术要求

纳米金粒径计算公式

质量÷197(金的摩尔质量)×1000。纳米金即指金的微小颗粒,其直径在1~100nm,具有高电子密度、介电特性和催化作用,能与多种生物大分子结合,且不影响其生物活性。其中纳米金粒径计算公式是:质量÷197(金的摩尔质量)×1000,相对于灵敏度较低的CA和TLC方法,这类灵敏度较高,但操作技术要求

金纳米颗粒在做扫描电镜喷金后还能看见吗

关键看你的金颗粒尺度有多大?如果10nm以下,就很困难,10nm以上,如果不是镶嵌在其他材料中,就可以。SEM 喷金镀膜一般10nm的金晶体可连续成膜,镀膜可复制底层形貌。

27-银纳米颗粒/Silver-nanoparticals/纳米银粒子,-10ml

27 银纳米颗粒/Silver nanoparticals/纳米银粒子, 10ml银纳米颗粒由于量子效应、小尺寸效应和具有大的比表面积,使纳米银具有超强的活性及渗透性,其杀菌作用是普通银的数百倍,具有传统无机抗菌剂不可比拟的抗菌效果,且安全性高、效力持久。由于其电子特性可与细菌的蛋白质分子上的疏基、

识别癌症DNA!这种纳米金颗粒只要10分钟

  近期,发表于《自然》子刊《Nature Communications》上的一项研究,为癌症早期诊断带来了令人眼前一亮的新方法。昆士兰大学的澳大利亚生物工程与纳米技术研究所(Australian Institute for Bioengineering and Nanotechnology,AIB

纳米颗粒跟踪分析技术对药物输送纳米颗粒的观察

纳米颗粒在药物输送中的应用持续迅猛发展。 纳米颗粒可提供优良的药代动力学特性、长效和缓释以及特定细胞、组织或器官的靶定。 可利用的能用于疾病治疗的新生物活性化合物的发现速度在不断递减,这推动了人们对纳米颗粒药物输送的关注。 每年进入市场的新药越来越少,利用纳米颗粒的多用途和多功能结构进行药物输送的兴

利用纳米颗粒跟踪分析(NTA)技术对药物输送纳米颗粒...

利用纳米颗粒跟踪分析(NTA)技术对药物输送纳米颗粒进行直接观察、测定大小和计数简介 纳米颗粒在药物输送中的应用持续迅猛发展。 纳米颗粒可提供优良的药代动力学特性、长效和缓释以及特定细胞、组织或器官的靶定。 可利用的能用于疾病治疗的新生物活性化合物的发现速度在不断递减,这推动了人们对纳米颗粒

单链DNA编码金纳米粒子法实现动态“纳米”分子反应

  近日,中国科学院上海高等研究院光源科学中心物理生物学研究室、中国科学院上海应用物理研究所和上海交通大学合作发展了一种用单链DNA编码金纳米粒子的方法,并实现了动态“纳米”分子反应。该方法通过设计一条多嵌段的单链DNA序列,可以赋予金纳米粒子类似原子的离散价态和正交价键。这些“纳米”原子则可通过D

金纳米颗粒传感器可用于检测早期肝腹水细菌

  由肝腹水引起的细菌性腹膜炎是造成肝硬化病人死亡的重要原因。目前临床上所面临的挑战是如何早期快速发现腹水中的细菌。常规的细菌检测的方法主要是微生物培养或基因分析,然而这些方法需要复杂的设备和专业技术人员的操作。检测过程   肽聚糖(Peptidoglycan, PG)是细菌细胞壁的主要成分。研究证

金纳米颗粒能对肝腹水细菌进行快速可视化检测

   由肝腹水引起的细菌性腹膜炎是造成肝硬化病人死亡的重要原因。目前临床上所面临的挑战是如何早期快速发现腹水中的细菌。常规的细菌检测的方法主要是微生物培养或基因分析,然而这些方法需要复杂的设备和专业技术人员的操作。  肽聚糖(Peptidoglycan, PG)是细菌细胞壁的主要成分。研究证明,由于

大连化物所纳米金催化研究获进展

  近日,中国科学院大连化学物理研究所研究员张涛、刘晓艳团队在金催化研究方面取得新进展,采用锌铝水滑石负载的硫醇保护Au25原子团簇作为前驱体制得的纳米金催化剂,在含有其它不饱和取代基团的芳香硝基化合物选择加氢反应中表现出较高的选择性,相关研究成果发表在《德国应用化学》(Angew. Chem. I

用金纳米“追踪”呼吸道病毒

  3月31日,记者从西南大学获悉,该校药学院研究生一篇研究如何用金纳米颗粒去标记记录呼吸道病毒侵染过程的论文,已被美国《自然》子刊《科学报告》录用,并在线发表。   据了解,现在西南大学药学院就读“药物分析”专业的研二学生万晓燕,在实验中发现,由于呼吸道病毒细胞极小,而传统的用来标记呼吸道病毒的

生物DNA调控生长出金纳米花

  一个跨国研究团队日前宣布,成功利用生物DNA片段实现了金纳米粒子的生长调控。研究人员表示,该成果通过单一步骤对纳米尺度的金属材料进行可自定义精确结构设计和制备,有望创造大量具有先进功能及充满结构艺术性的新型纳米材料。   该研究将生物DNA应用于没有生命的无机化学领域,通过对反应边界条件的控制,

金纳米粒子技术可让植物发光

  为了减少原材料的浪费和对环境的污染,科学家推出了一种新型的照明技术,可以无需另行铺设电源线路及架设照明灯具,而是利用道路两旁的树木来为我们提供光线。 植物照明设想图   台湾地区的国立成功大学教授苏颜勋(Yen-Hsun Su)表示,给树木注射的金纳米粒子可以诱导植物叶子发出红色的光线,从而

珀金埃尔默SPICPMS对西红柿吸收金纳米颗粒的表征

  伴随着工程纳米材料在各个不同产品和过 程的使用不断增加,人们开始对纳米粒子 (ENPs)的释放对环境和人类健康造成的 影响产生了担心。要研究纳米粒子(ENPs) 对环境的影响,就必须探索如何植物通过水和土壤等途径的迁徙来纳米粒子(ENPs)的。如果纳米粒子ENPs最终为食品作 物所吸收,那么人

珀金埃尔默SPICPMS对西红柿吸收金纳米颗粒的表征

  伴随着工程纳米材料在各个不同产品和过 程的使用不断增加,人们开始对纳米粒子 (ENPs)的释放对环境和人类健康造成的 影响产生了担心。要研究纳米粒子(ENPs) 对环境的影响,就必须探索如何植物通过水和土壤等途径的迁徙来纳米粒子(ENPs)的。如果纳米粒子ENPs最终为食品作 物所吸收,那么人类

纳米颗粒识别血管斑块

  现行医疗技术中,医生只能识别由于血小板聚集而变窄的血管。方法是从手臂、腹股沟或颈部的血管处开一个切口植入导管,从导管注入染色剂,使X射线显示狭窄部位。日前,由凯斯西储大学科学家率领的一组研究人员开发了一种多功能纳米颗粒,能使磁共振成像(MRI)定位动脉粥样硬化引起的血管斑块。此项技术向无创性

纳米颗粒的分散技术

    颗粒分散是指粉体颗粒在液相介质中分离散开并在整个液相中均匀颁的过程,根据分散方法的不同,可分为以下几种:一、机械搅拌分散主要借助外佛罗里达剪切力或撞击力等机械能,使纳米粒子在介质中充分分散,通过对分散体系施加机械力,引起体系内物质的物理、化学性质变化以及伴随的一系列化学反应来达到分散目的,但

纳米颗粒的分散技术

颗粒分散是指粉体颗粒在液相介质中分离散开并在整个液相中均匀颁的过程,根据分散方法的不同,可分为以下几种:一、机械搅拌分散主要借助外佛罗里达剪切力或撞击力等机械能,使纳米粒子在介质中充分分散,通过对分散体系施加机械力,引起体系内物质的物理、化学性质变化以及伴随的一系列化学反应来达到分散目的,但是研磨过