Antpedia LOGO WIKI资讯

北大生科院最新PNAS文章

来自北京大学生命科学学院的研究人员独立完成了一项最新研究成果:Self-assembly and sorting of acentrosomal microtubules by TACC3 facilitate kinetochore capture during the mitotic spindle assembly,发现了一种与癌症有关的蛋白:转录相关酸性卷曲蛋白3(transforming acidi ccoiled—coil proteins,TACC3)依赖性非中心体微管的组装和分选,能促进纺锤体装配过程中动粒与微管的捕捉。 这一研究成果公布在《美国国家科学院院刊》(PNAS)杂志上,文章的通讯作者是北京大学生命科学学院张传茂教授,第一作者为付文祥博士。 张传茂教授实验室的重点研究方向之一为细胞分裂增殖调控机理研究。细胞分裂增殖是生物界赖以存在的基础。细胞分裂过程是由一系列调控因子所驱动的......阅读全文

专访:不可思议的蛋白质相变过程

   曾有位学者说过,生物界中似乎没有哪一个事件的悲壮程度可以与细胞分裂相比拟,因为为了新生命的诞生,老细胞需要撕裂瓦解,而这其中涉及的关键词之一就包括纺锤体。从表面上看,有丝分裂纺锤体(spindle)是一个具有橄榄球形状螺纹的球,它就像大力士海格力克,拉扯着染色体向两极移动,因此不言而喻这种结构

PNAS:MRN复合物在染色体分离中的新功能

  在绝大多数生物体中,DNA是主要的遗传物质。DNA在外界环境或生物体内部因素的影响下会产生损伤,为了维持基因组的稳定性,真核细胞进化出多种DNA损伤应答机制(DNA damage response,DDR)以应对不同类型的DNA损伤。MRN复合体在DNA损伤应答途径中有重要作用,可以作为感受因子

CCDC84的周期性乙酰化修饰以及对中心粒数量的控制

  中心体是动物细胞主要的微管组织中心,该细胞结构由一对中心粒以及包围在其周围的中心粒外周物质组成。在细胞周期运行过程中,中心粒的复制(或组装)只在S期与DNA的复制同步进行,而且在每个已经存在的中心粒的近端只能组装一个子中心粒,但机制尚不明确【1】。中心体的数目或结构异常会影响有丝分裂纺锤体的组装

Cell:小分子RNA的大作用

  所有有性繁殖多细胞生物体都依赖于卵子来支持早期的生命。加州大学圣地亚哥医学院及Ludwig癌症研究所的研究人员利用微小线虫作为模型,更好地了解了卵子仅借助于已存在的物质实现胚胎发育的机制。发表在3月24日《细胞》(Cell)杂志上的这项研究,揭示出了小分子RNA(Small RNAs)和辅助蛋白

生物大分子的“相变”

编者按:生物大分子的“相变”或者说“相分离”应该说近几年来生命科学领域里面发展非常迅速的热门领域。然而很多同行却表示自己还没搞清楚“相分离”到底是怎么回事它就已经火了。为什么说火了?除了同行私底下交谈关于最新学术进展可以约莫了解一些之外,另一个风向标是观察以CNS为代表的杂志发表相关论文的情况。截止

复旦马红PNAS、Plant Cell连发重要成果

  复旦大学的马红教授,是活跃于美国科学界的卓有成就的年轻华人科学家之一,科研成果丰硕。他发现了植物第一个编码G蛋白亚基,同时也是花同源异型框基因的共同发现者。近期,马红教授带领的课题组,在植物减数分裂研究方面的重要成果,先后发表在国际著名学术期刊《PNAS》和《Plant Cell》。  在9月2

年终盘点:2016年国内不容错过的重磅生物研究

  时间总是过得很快,2016年马上就要过去了,迎接我们的将是崭新的2017年,2016年,我国有很多优秀科研机构的科学家们都做出了意义重大、影响深远的研究成果,发表在国际顶级期刊上。本文中小编盘点了2016年我国科学家发表的一些重磅级研究,以饕读者。   --结构生物学 --  1.清华大学 施一

小GTP酶通过促进蛋白质降解调控有丝分裂的进行被发现

  10月5日,The Journal of Cell Biology(《细胞生物学杂志》)发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员朱学良研究组和美国华盛顿卡内基研究所教授郑诣先研究组的合作论文RanGTP aids anaphase entry through Ubr5-

蛋白质乙酰化修饰的精细调控

近期,国际著名学术期刊《美国国家科学院院刊》在线发表了中国科学技术大学生命科学学院施蕴渝教授与姚雪彪教授研究组的合作成果,文章标题为EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore -m

张传茂教授课题组JCB获细胞分裂重要发现

  近期北京大学生命科学学院张传茂教授课题组在纺锤体组装和染色体列队和分离研究中取得了重要进展。继发现微管募集蛋白TPX2受到Aurora A蛋白激酶磷酸化调控,进而调节细胞有丝分裂中期纺锤体长度(Fu et al, 2015. Journal of Cell Biology)后,该课题组最新发现去

细胞周期的间期与分裂期阶段介绍

细胞周期(cell cycle)是指细胞从一次分裂完成开始到下一次分裂结束所经历的全过程,分为间期与分裂期两个阶段。(一) 间期间期又分为三期、即DNA合成前期(G1期)、DNA合成期(S期)与DNA合成后期(G2期)。1. G1期(first gap) 从有丝分裂到DNA复制前的一段时期,又称

荧光原位杂交技术检测植物基因组中整合的转基因片段...

实验材料核苷酸                                         &n

荧光原位杂交技术检测植物基因组中整合转基因片段实验

实验材料核苷酸试剂、试剂盒冰水8-羟基喹啉秋水仙素固定剂酶解缓冲液仪器、耗材载玻片玻璃盖玻片解剖针及镊子实验步骤原位杂交的基本操作方法(图 14 .2 ) 演化自 Southern 杂交:标底是玻片上的染色体和细胞核,探针是带标记的待测 DNA 序列 [ 本书中即是转基因和对照,图 14.3(a)

荧光原位杂交技术检测植物基因组中整合的转基...(一)

荧光原位杂交技术检测植物基因组中整合的转基因片段实验实验材料 核苷酸试剂、试剂盒 冰水8-羟基喹啉秋水仙素固定剂酶解缓冲液仪器、耗材 载玻片玻璃盖玻片解剖针及镊子实验步骤 原位杂交的基本操作方法(图 14 .2 ) 演化自 Southern 杂交:标底是玻片上的染色

中科大长江学者连发权威期刊文章

  近日,教育部长江学者特聘教授、中国科技大学博士生导师姚雪彪带领的研究小组,接连在《PNAS》、《Journal of Biological Chemistry》和《Scientific Reports》上发表细胞分裂调控研究的重要学术成果。  姚雪彪教授1995年毕业于美国加州大学伯克利分校,获

中国科技大学PNAS新文章

近日,来自中国科技大学生命科学学院的研究人员发表了题为“EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochoreCmicrotubule interactions in mitosis”的研究

SENP6对着丝粒特异性组蛋白CENP-A定位的调控机制

  中国科学院生物物理研究所朱冰课题组题为SENP6-mediated M18BP1 deSUMOylation regulates CENP-A centromeric localization 的研究论文于2019年1月10日在Cell Research 杂志在线发表。该研究发现去SUMO化酶S

于洪涛教授Cell发布糖尿病研究重要发现

  德克萨斯大学西南医学中心的研究人员发现,对细胞分裂定时进行起重要作用的一些蛋白还兼职调控了血糖水平。这项研究发布在6月30日的《细胞》(Cell)杂志上。  这篇论文的资深作者是德克萨斯西南医学中心药理学教授、霍华德休斯医学研究所(HHMI)研究员于洪涛(Hongtao Yu)博士。于教授的主要

我国科研人员发现肿瘤细胞调控关键因子和新机制

  近日,军事医学科学院再传好消息,该院国家生物医学分析中心主任张学敏科研团队在肿瘤生长和调控研究中取得重要突破,发现了肿瘤细胞周期调控的关键因子和新机制,为肿瘤靶向治疗研究提供了新的靶标分子。  此项研究工作已被国际著名学术期刊《自然细胞生物学》(Nature Cell Biology,影响因子1

北京大学Nature子刊解析重要激酶

  来自北京大学深圳研究生院化学生物学与生物技术学院的研究人员,在新研究中揭示了Polo样激酶1(Polo-like kinase 1,PLK1)抑制的结构基础,相关论文“Structural basis for the inhibition of Polo-like kinase 1”发表

肿瘤细胞调控关键因子和新机制被我国科研团队发现

  近日,军事医学科学院国家生物医学分析中心主任张学敏科研团队,发现了肿瘤细胞周期调控的关键因子和新机制,为肿瘤靶向治疗研究提供了新的靶标分子。此项研究报告已被国际著名学术期刊《自然细胞生物学》杂志在线发表。  癌症作为一类恶性肿瘤,由人体内正常细胞演变而来。大量实验与临床研究发现,

细胞周期-2

G2 期  是DNA复制结束和开始有丝分裂之间的间隙,在这期间细胞合成某些蛋白质和RNA分子,为进入有丝分裂提供物质条件。 用放射标记的RNA前体和蛋白质前体示踪,表明G2 期进行着强烈的RNA和蛋白质的合成。假如破坏这些合成过程,细胞就不能过渡到M期。G2 期合成的是染色体浓缩以及形成有丝

潘欣/张学敏团队发现细胞有丝分裂进程的能量供给机制

  线粒体是为细胞活动提供能量的发电厂,但它的发电功率并非一成不变,而是根据需求适时调整。细胞在经历许多特定关键事件时是高度耗能的,例如在有丝分裂中期,要将体积“巨大”的染色体在赤道板全部“吊装”到位和排列整齐,并通过纺锤体微管系统将这些“庞然大物”拉向两极,需要超大功率“电力”设备才能驱动。但是,

关于2011年度教育部科学技术研究重点项目立项通知

教技司[2011]95号 各省、自治区、直辖市教育厅(教委)、新疆生产建设兵团教育局,国家民族事务委员会教科司、国务院侨办文教宣传司:   2011年度教育部科学技术研究重点项目评审工作已经结束。经专家评审并公示,共有212个项目获准立项(具体名单见附件)。为做好项目实施工作,现将有关

果蝇: 人类的远房“小表弟”

  当我们辛勤忙碌了一整天回到家中,在厨房准备开火,却看见几只个头矮小的果蝇们也在忙碌着觅食,它们已经在我们的厨房组建家庭,结婚生子。尽管你看到厨房里美味的香蕉上沾满了果蝇们的足迹,会心生厌烦,非常想杀之而后快,可你不知道的是这小小的果蝇也为人类做出了不少贡献,最近一项研究还发现,果蝇可能与人类存在

2019年10月Science期刊不得不看的亮点研究

  10月份Science期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。  1.Science:新研究揭示人类微生物组是潜力巨大的新型抗菌药物聚宝盆  doi:10.1126/science.aax9176  就像淘金热中的淘金者曾经在北加州的山上开采这种闪亮的贵金属一样,“生物勘