Antpedia LOGO WIKI资讯

锂电池材料硅酸铁锂的水热(溶剂热)法合成简介

将Fe(CH3COO)2·4H2O、Li(CH3COO)·2H2O、SiO2与葡萄糖混合,在水热釜中(装填率67%)200℃下保温72h,取出后洗涤、离心分离,即得到Li2FeSiO4/C样品。该方法在水热反应的过程中实现了碳的包覆,简化了合成过程。产物以C/5 在1.5~4.5V循环,首次放电比容量为136 mAh/g,循环100次的容量保持率为96. 1%。 利用溶剂热合成法合成Li2FeSiO4。先将Li(CH3COO)·2H2O、FeC2O4·H2O 和TEOS 溶于乙醇,加少量乙酸作为催化剂,在高压釜中(装填率50%)120℃下保温20 h,取出产物并与蔗糖混合球磨,将粉料压成圆片后,在N2气氛中、600℃下保温10h,得到产物。样品在30℃下以C/16在1.5~4.8 V循环,首次放电比容量为160mAh /g,循环50次,容量没有衰减。......阅读全文

锂电池材料硅酸铁锂的水热(溶剂热)法合成简介

  将Fe(CH3COO)2·4H2O、Li(CH3COO)·2H2O、SiO2与葡萄糖混合,在水热釜中(装填率67%)200℃下保温72h,取出后洗涤、离心分离,即得到Li2FeSiO4/C样品。该方法在水热反应的过程中实现了碳的包覆,简化了合成过程。产物以C/5 在1.5~4.5V循环,首次放电

锂电池材料硅酸铁锂的喷雾热解法合成介绍

  利用球磨和喷雾干燥法,制备具有高活性、良好表面形貌的前驱体。用水作为分散剂,将FeC2O4·2H2O、Li2C2O4和SiO2球磨10 h,所得浆料于100℃干燥,制成前驱体,在Ar气氛中、350℃下预烧3h;再添加蔗糖,以乙醇为分散剂,球磨15h,在120℃真空(真空度为113Pa)喷雾干燥,

锂电池材料硅酸铁锂的微波法合成简介

  将Li2CO3、FeC2O4·2H2O、纳米SiO2和葡萄糖分散在丙酮中,球磨16h 后干燥,制成块状;在氩气气氛中、微波恒温700℃处理12 min,合成Li2FeSiO4/C 样品。所得产物以C/20在2.0~3.8 V 循环,首次放电比容量为94 mAh /g,10次循环后下降为88.4

锂电池材料硅酸铁锂的自蔓延燃烧法合成简介

  将LiNO3、Fe(NO3)3·9H2O、纳米SiO2溶于水中,加入蔗糖,将外部加热装置设定在120℃,搅拌升温蒸发水分,继续加热。前驱体中含有大量的硝酸盐及蔗糖,混合物发生自蔓延燃烧并生成粉末。  将粉末在CO/CO2气流的保护下,于800℃保温10 h,所得样品在60 ℃下,以C/20 在1

锂电池材料硅酸铁锂的简介

  硅酸亚铁锂(Li2FeSiO4)能可逆地嵌脱Li+,比容量较高,可用作锂离子电池正极材料。通过计算电负性考察聚阴离子体系Li2MSiO4(M = Fe、Mn、Ni和Co)的结构稳定性与电极电位的关系,认为:Li2CoSiO4与Li2NiSiO4的电压平台高于所用电解液的承受能力;而Li2MnSi

锂电池材料硅酸铁锂的超临界热合成法介绍

  利用超临界热合成法制备Li2FeSiO4纳米片。将FeCl2·4H2O和TEOS溶解于乙醇中、LiOH·H2O和柠檬酸溶解于水中,两种溶液混匀后装入容器,在400℃下保温10 min,急冷后离心干燥,得到产物。将产物与碳纳米管(CNT)混合,再在Ar气氛中、300℃下保温3h,得到Li2FeSi

关于锂电池材料硅酸铁锂的溶胶-凝胶法介绍

  将LiCH3COO·2H2O 和柠檬酸铁溶于水中,边搅拌边缓慢加入饱和柠檬酸溶液,再加入溶于乙醇的正硅酸乙酯(TEOS);在80℃下保温14h,形成溶胶,在75℃下挥发乙醇后,得到凝胶;将凝胶在100℃下烘干,得到干凝胶;经过700℃ /12h 的退火处理,得到最终产物。产物以C/16在1.5~

关于锂电池材料硅酸铁锂的高温固相法介绍

  利用固相法,以Li2SiO3与FeC2O4·H2O为原料合成了Li2FeSiO4。将原料在丙酮中分散,加入质量分数10%的碳凝胶,用CO/CO2气氛防止Fe2+ 被氧化,在750 ℃下保温24h。所得样品以C/16 在2.0~3.7 V 循环,在60℃下的首次放电比容量为165 mAh/g,经过

锂电池材料硅酸铁锂的熔融盐法介绍

  采用熔融碳酸盐法合成Li2FeSiO4材料,将Li2CO3、Na2CO3、K2CO3按物质的量比0. 435∶0. 315∶0. 250混合,在CO2气氛中、700℃下烧结1 h,得到复合碳酸盐;将复合盐、FeC2O4·H2O和Li2SiO3按物质的量比6∶5∶5混合,在CO2 /H2气氛中、5

锂电池材料硅酸铁锂的相关问题介绍

  Li2FeSiO4材料有多种晶型,不同合成温度与合成方法都会对材料的结构产生影响,较低温度和溶胶凝胶法制备的材料性能较好。Li2FeSiO4可实现多于1 个Li + 的脱嵌,理论比容量高,在高电位下可生成Fe4+ 离子。与LiFePO4类似,Li2FeSiO4也是一维的Li + 通道,材料较低的