Antpedia LOGO WIKI资讯

RACE(rapidamplificationofcDNAends)技术1

RACE技术的简介cDNA完整序列的获得对基因结构、蛋白质表达、基因功能的研究至关重要。完整的cDNA 序列可以通过文库的筛选和末端克隆技术获得。末端克隆技术是20世纪80年代发展起来的。RACE(rapid-amplification of cDNA ends)是通过PCR进行cDNA末端快速克隆的技术。RACE的优点与筛库法相比较,有许多方面的优点1)此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有利用价值的信息。2)节约了实验所花费的经费和时间。3)只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长。实验室现有的RACE试剂盒的简介RACE 是一种从一个相同的cDNA模板进行5‘和3‘末端快速克隆的方法。此方法会产生较少的错误条带。此过程中使用的酶混合物非常适合长链PCR。使用此方法的要求是必须知道至少23-28个核苷酸序列信息,以此来设计5’末端和3‘末端RACE反应的基因特异......阅读全文

RACE-PCR克隆基因的几点建议

摘 要:  RACE是一种快速克隆cDNA末端的方法,目前, 该方法被广泛应用于未知碱基序列基因的克隆,尤其是SMART RACE技术更为人们所青睐。本文总结了我们实验室用SMART RACE技术克隆基因的一些心得体会,希望对用RACE方法克隆基因的同行有些帮助。关键词: RACE; RN

盘点:31项与免疫学有关的分子生物学实验技术

  现代分子生物学和免疫学的进展加深了我们对许多疾病的了解,并且导致了免疫新策略的产生,免疫学检测方法可分为体液免疫和细胞免疫测定。本文盘点了与免疫学有关的分子生物学实验技术汇总。  一、GST pull-down实验  GST是指谷胱甘肽巯基转移酶,GST pull-down实验是一个行之有效的验

RACE技术的原理和操作

近年来随着生物技术的不断发展,出现了许多克隆新基因的方法和手段,如图谱克隆技术、转座子标签技术、mRNA差异显示技术二基因组减法技术以及cDNA文库筛选技术等。但上述方法人多具有实验周期长、技术步骤烦琐且工作量大等特点。cDNA末端快速扩增技术(rapid amplification of cDNA

RACE技术的原理和操作

近年来随着生物技术的不断发展,出现了许多克隆新基因的方法和手段,如图谱克隆技术、转座子标签技术、mRNA差异显示技术二基因组减法技术以及cDNA文库筛选技术等。但上述方法人多具有实验周期长、技术步骤烦琐且工作量大等特点。cDNA末端快速扩增技术(rapid amplification of cDNA

RACE技术的原理和操作

近年来随着生物技术的不断发展,出现了许多克隆新基因的方法和手段,如图谱克隆技术、转座子标签技术、mRNA差异显示技术二基因组减法技术以及cDNA文库筛选技术等。但上述方法人多具有实验周期长、技术步骤烦琐且工作量大等特点。cDNA末端快速扩增技术(rapid amplification of cD

RACE PCR简介

近年来随着生物技术的不断发展,出现了许多克隆新基因的方法和手段,如图谱克隆技术、转座子标签技术、mRNA差异显示技术二基因组减法技术以及cDNA文库筛选技术等。但上述方法人多具有实验周期长、技术步骤烦琐且工作量大等特点。cDNA末端快速扩增技术(rapid amplification of cDNA

RACE技术的原理和操作

近年来随着生物技术的不断发展,出现了许多克隆新基因的方法和手段,如图谱克隆技术、转座子标签技术、mRNA差异显示技术二基因组减法技术以及cDNA文库筛选技术等。但上述方法人多具有实验周期长、技术步骤烦琐且工作量大等特点。cDNA末端快速扩增技术(rapid amplification of cDNA

RACE的原理、应用和优缺点(一)

一、RACE 的简介  目前,全长基因的获得是生物工程及分子生物学研究的一个重点。尽管已经有多种方法可以获得基因的全长序列,但在很多生物研究中,由于所研究的目的基因丰度较低,从而使得由低丰度mRNA通过转录获得全长cDNA很困难。近年来发展成熟的cDNA末端快速扩增(RACE)技术为从低丰度转录快速

PCR基因芯片上荧光PCR反应的研究(五)

3.讨论  随着近年基因芯片技术的发展,研究者逐渐认识到基于核酸杂交原理的传统基因芯片缺陷与应用的局限性。随着PCR技术的进展,特别是荧光定量PCR技术的出现PCR技术已成为生物医学领域中应用最广泛的技术。如果一种基因芯片能直接进行PCR反应,而且能够同时扩增大批可能发生变异的基因显

mRNA差异显示技术(mRNA differetial display)(2)

6.技术路线 mRNA 差异显示技术 The fluoroDD System •Builds on the HIEROGLYPH™ system –TMR-labeled anchored primers –Increased primer concentrations –I

5端RACE升级版

实验概要完成这个RACE需要全套反转录系统,当然选一个好的反转录酶(无RNase H),dUTP,taq酶,Uracil DNA glycosylase ,还有这几条引物: Adapter A AUCUCGAGUUCGCGCCGGAUCC(T) 25 VN cDNA s

荧光标记mRNA差异显示技术

mRNA差异显示技术(differential display,DD)是用于研究基因的差异表达的新方法。该技术自1992年被首次报道后,即以其不可替代的优势被广泛应用于生物医学领域。在应用过程中不断得到改进,并产生了诸多衍生技术如RPA(RNA finger printing by arbitrar

PCR PRIMER DESIGN AND REACTION OPTIMISATION

ContentsFactors Affecting the PCR  Nested Primer PCRPrimer LengthDegenerate PrimersElongation Temperature and TimeReaction BufferCycle Numbe

cDNA Libraries

cDNA LibrariesIsolation of corresponding genetic informationInstead of synthesizing a desired gene, can we used the amino acid information to directly

基因芯片的制备、应用与前景

 摘要:基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术,是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法,将大量DNA探针片段有序地固化予支持物的表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,就可得出该样品的遗传信息。基因芯片技术目前国内

RT-PCR一些心得

从RNA到电泳鉴定一、RT-PCR原理:提取组织或细胞中的总RNA,以其中的mRNA 作为模板,采用Oligo(dT)或随机引物利用逆转录酶反转录成cDNA。再以cDNA 为模板,用VI 型胶原蛋白的α1 链的编码序列的特异性引物进行PCR 扩增,而获得目的基因或检测基因表达。RT-PCR 使RNA

DNA分子标记技术研究进展(二)

2.第二代分子标记2.1 SSR标记技术    在真核生物基因组中存在许多非编码的重复序列,如重复单位长度在15~65个核苷酸的小卫星DNA(Minisatellite DNA),重复单位长度在2~6个核苷酸的微卫星DNA(Microsatellite DN

常用的分子生物学基本技术

核酸分子杂交技术由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的

DNA损伤修复机制——非同源末端链接NHEJ和同源重组HR

  生命极其脆弱,我们每天在电子辐射、紫外线、雾霾等等各种外部环境及细胞代谢产物等内源因素影响下,我们生命的核心-DNA都会受到不同程度的损伤,其中DNA双链断裂(DSBs,Double strand breaks)是损伤中最为严重的一种,然而生命却又极其强大,我们无时无刻不在受伤,也无时无刻不在自

PCR简介及污染的处理

PCR技术简介  前言 一滴残留在裙子上的精液使得美国总统Bill Clinton不得不坦承他与白宫实习生有不正当的关系。因为他知道现在的生物科技就连一个精子也能被用来做为证据。这种将极微量的生物标本化为可供鉴定的现代技术正是PCR(Polymerase chain reacti

饶毅:美妙的生物荧光分子与好奇的生物化学家

下村修 做出应获诺贝尔奖工作的科学家,几十年默默无闻;  被广泛应用的分子,很少人知其发现者; 原始论文鲜为人知,后继论文倒很热门;  曾失明的人,发现了美丽的发光蛋白; 低调的父亲,出了高调的儿子。  这里简介一项生物化学研究,讲一个科学家的故事,

基因表达轮廓(gene expressed profile)技术-2

经过这轮RDA过程,Tester中的目的DNA将得到第一次富集。将第一轮产物更换新接头,进行第二轮RDA过程,目的DNA可得到进一步的富集。该技术假阳性很低。但仍不能解决个体mRNA在丰度上存在巨大差异的问题,当靶序列浓度较低时,其富集受抑制。3:抑制消减杂交(suppression subtrac

基因表达轮廓(gene expressed profile)技术-1

基因表达谱或基因表达轮廓(gene expressed profile)技术就是利用mRNA提取、cDNA合成、酶切、连接、PCR及分子杂交等分子生物学基础操作技术,将某一生物材料在某一特定阶段表达的基因全部展示出来,通过测序及与数据库比较或通过目标和对照样品中所表达基因的比较,可以找出特异表达

PCR简介及污染的处理 高速离心机

何谓PCR,简单的说,PCR就是利用DNA聚合酶对特定基因做体外或试管内 In Vitro 的大量合成。基本上它是利用DNA聚合酶进行专一性的连锁复制.目前常用的技术,可以将一段基因复制为原来的一百亿至一千亿倍。 PCR的要素基本的PCR须具备1.要被复制的DNA模板 Template 2

高密度光纤芯片技术及其在功能基因组学中的应用

DNA微阵列技术的发展[1]带来了基因表达研究方法上的一场革命。传统的Northern blots或RT-PCR方法只能逐一地研究单个基因的表达,而DNA微阵列技术可以同时例行检测成千上万个基因表达水平的变化,在微芯片上置入寡核苷酸探针或相应于mRNA序列的cDNA,与细胞cDNA或cRNA进行杂交

DNA损伤修复机制——非同源末端链接NHEJ和同源重组HR

【干货】拯救你受伤的DNA-NHEJ与HR生命极其脆弱,我们每天在电子辐射、紫外线、雾霾等等各种外部环境及细胞代谢产物等内源因素影响下,我们生命的核心-DNA都会受到不同程度的损伤,其中DNA双链断裂(DSBs,Double strand breaks)是损伤中最为严重的一种,然而生命却又极

DNA损伤修复机制——非同源末端链接NHEJ和同源重组HR

生命极其脆弱,我们每天在电子辐射、紫外线、雾霾等等各种外部环境及细胞代谢产物等内源因素影响下,我们生命的核心-DNA都会受到不同程度的损伤,其中DNA双链断裂(DSBs,Double strand breaks)是损伤中最为严重的一种,然而生命却又极其强大,我们无时无刻不在受伤,也无时无刻不

PCR

PCRPolymerase Chain Reaction1) Add the following to a microfuge tube:10 ul reaction buffer1 ul 15 uM forward primer1 ul 15 uM reverse primer1 ul templ

量身打造!RNA-Capseq更适合临床融合基因检测

  基因融合或易位可能产生功能改变的嵌合蛋白,也可能重新排列基因启动子,通过激活原癌基因或抑制抑癌基因导致细胞信号通路紊乱,它们在肿瘤的发生过程中扮演着重要的角色。[1,3] 例如,BCR–ABL1融合会导致酪氨酸激酶活性以及下游PI3K和MAPK信号通路的组成型激活,使细胞逃避凋亡,实现无限增殖。

多功能单细胞显微操作系统FluidFM BOT在活细胞提取中的...

多功能单细胞显微操作系统FluidFM BOT在活细胞提取中的应用由于细胞异质性的存在,单细胞层面的分析就变得十分重要。目前对于单细胞分析的方法主要还是通过化学、生物学的方法进行裂解后,提取内容物进行分析,然而这种方法往往会对样本造成一些损伤。直接提取活细胞具有诸多优点,但是操作苦难。如今一种全新使