Antpedia LOGO WIKI资讯

通过模拟细菌DNA实现穿越其限制修饰屏障的新方法

细菌是存在于自然环境中的一个重要生物类群,参与自然环境碳、氮和硫等元素的循环,另外,细菌在人类的健康与疾病、工业微生物发酵及农业生物病虫害防治等领域也占有重要地位。遗传操作是研究细菌生理功能、致病机理及构建基因工程菌株的先决条件。迄今为止,仅有少数实验室的模式菌株实现了遗传转化,而对直接从自然环境中分离的野生型细菌、经人工驯化的工业生产菌及大量的非模式菌株实现遗传操作始终是困扰微生物学家的一个世界性难题。限制修饰(Restriction modification, RM)系统是外源DNA进入细菌并实现稳定遗传的主要屏障。在完成基因组测序的所有细菌中,95%的菌株含有RM系统,而33%的菌株更是含有四套以上RM系统,含有多套RM系统使细菌的遗传操作更加困难。 典型的RM系统由DNA甲基转移酶(DNA methyltransferases, MT......阅读全文

微生物实验大肠杆菌能水解淀粉吗

不能,淀粉水解实验,大肠杆菌没有圈,枯草芽孢杆菌有透明圈,基本说明大肠杆菌不水解淀粉。

大肠杆菌微生物学检查法

(一)细菌的分离鉴定1.标本:肠道外感染取中段尿、血液、脓液、脑脊液等,腹泻者取粪便。2.分离培养与鉴定:粪便标本直接接种肠道杆菌选择性培养基。血液需先经肉汤增菌,再转种血琼脂平板。其他标本可同时接种血琼脂平板和肠道杆菌选择性培养基。37℃孵育18~24小时后,观察菌落并涂片染色镜检。采用一系列生化

粪便微生物群移植传播耐药大肠杆菌菌血症

  美国马萨诸塞州总医院Elizabeth L. Hohmann课题组发现,耐药性大肠杆菌菌血症可通过粪便菌群移植传播。该研究10月30日在线发表于《新英格兰医学杂志》。据悉,粪便微生物群移植(FMT)是一种治疗复发性难治性艰难梭菌感染的新方法,目前正在积极研究其他适用条件。  该研究团队描述了两名

微生物所在大肠杆菌中实现碳浓缩固碳

  将CO2转化为燃料或化学品,是实现CO2的资源化利用、缓解资源能源短缺和温室效应的一种途径。经遗传改造的蓝细菌或者藻类等光合自养微生物,可以将CO2转化为包括乙醇、丁醇、丙酮、异丁醛、乳酸等在内的数十种化学品,但由于自养生物生长速度慢,CO2生物转化为这些化学品的效率还比较低。  异养生物可以通

甲基化的甲基化的功能

甲基化是蛋白质和核酸的一种重要的修饰,调节基因的表达和关闭,与癌症、衰老、老年痴呆等许多疾病密切相关,是表观遗传学的重要研究内容之一。 最常见的甲基化修饰有DNA甲基化和组蛋白甲基化。DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。DNA甲基化能引起染色质结构、DNA构象、D

通过模拟细菌DNA实现穿越其限制修饰屏障的新方法

        细菌是存在于自然环境中的一个重要生物类群,参与自然环境碳、氮和硫等元素的循环,另外,细菌在人类的健康与疾病、工业微生物发酵及农业生物病虫害防治等领域也占有重要地位。遗传操作是研究细菌生理功能、致病机理及构建基因工程菌株的先决条件。迄今为止,仅有少数实验室的模式菌株实现了遗传转化,而对

大肠杆菌

      大肠细菌(E. coli)为埃希氏菌属(Escherichia)代表菌。一般多不致病,为人和动物肠道中的常居菌,在一定条件下可引起肠道外感染。某些血清型菌株的致病性强,引起腹泻,统称病致病大肠杆菌。一、生物学性状(一)形态与染色大小0.4~0.7×1~3um,无芽胞,大多数菌株有动力。有

大肠杆菌素或能杀死大肠杆菌本身

  近日,英国诺丁汉大学生物分子科学中心研究人员表示,他们发现了对付大肠杆菌菌株的新线索。研究人员指明了如何使“细菌素”——能够杀死其他细菌菌株的物质——进入细菌细胞进而杀死它,以及如何让大肠杆菌产生的大肠杆菌素A有针对性地到另一个细胞蛋白(TolA)中创建一个新的“特洛伊木马”武器,并最终从内部杀

微生物所于波李寅团队让大肠杆菌产萝卜硫苷

  流行病学资料证实经常食用十字花科蔬菜和降低癌症风险之间的相关性。这种预防癌症的性质主要归因于芥子油苷产物,例如在西兰花中发现的葡萄糖苷。中国科学院微生物研究所于波团队首次报道了通过基因选择、途径设计和蛋白质工程在大肠杆菌中成功构建了萝卜硫苷的生物合成途径。萝卜硫苷是植物来源的癌症化学预防前体。

dna甲基化与rna甲基化的区别

DNA甲基化和组蛋白修饰的相同点:都有包含甲基化修饰;不同点:修饰对象不同,一个是对DNA修饰,一个是对蛋白:组蛋白修饰。而RNA干扰是对RNA的降解,与前两者差异较大。