关于组蛋白基因的简介

组蛋白基因(histone gene) 组蛋白基因是已知的重复基因中唯一具有蛋白质编码机能的基因。它们在DNA合成开始前短暂地表达,因而它的活动与细胞周期密切相关。 基因组中存在大量重复序列用以编码组蛋白是有其重要意义的。DNA复制时,组蛋白也要成倍增加,而且往往在DNA合成一小段后,组蛋白马上就要与其相结合,这要求在较短的时间内合成大量的组蛋白,因而需要有大量的组蛋白基因存在。 人体基因组中还有几个大的基因簇,也属于中度重复顺序长的分散片段型。在一个基因簇内含有几百个功能相关的基因,这些基因簇又称为超基因(Super gene),如人类主要组织相容性抗原复合体HLA和免疫球蛋白重链及轻链基因都属于超基因。超基因可能是由于基因扩增后又经过功能和结构上的轻微改变而产生的,但仍保留了原始基因的结构及功能的完整性。......阅读全文

关于组蛋白基因的简介

  组蛋白基因(histone gene) 组蛋白基因是已知的重复基因中唯一具有蛋白质编码机能的基因。它们在DNA合成开始前短暂地表达,因而它的活动与细胞周期密切相关。  基因组中存在大量重复序列用以编码组蛋白是有其重要意义的。DNA复制时,组蛋白也要成倍增加,而且往往在DNA合成一小段后,组蛋白马

组蛋白的简介

  重组蛋白的产生是应用了重组DNA或重组RNA的技术从而获得的蛋白质。目前,体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。

组蛋白的简介

  组蛋白(histone)是指所有真核生物的细胞核中,与DNA结合存在的碱性蛋白质的总称。其分子量约10000~20000。  真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合物。因

关于组蛋白基因的研究进展介绍

  人体蛋白质编码基因数量最早估计有10万个左右,人类基因组计划将其数量减少到了2万个左右,而最新研究再次将这一数量减少到了1.9万。研究负责人、西班牙国立癌症研究中心的Alfonso Valencia说,几年前无人会想到,如此少的基因会创造出人类这样如此复杂的物体。  研究人员说,人类和灵长类动物

关于组蛋白的概述

  组蛋白的基因非常保守。亲缘关系较远的种属中,四种组蛋白(H2A、H2B、H3、H4)氨基酸序列都非常相似,如海胆组织H3的氨基酸序列与来自小牛胸腺的H3的氨基酸序列间只有一个氨基酸的差异,小牛胸腺的H3的氨基酸序列与豌豆的H3也只有4个氨基酸不同。不同生物的H1序列变化较大,在某些组织中,H1被

关于基因重复的简介

  基因重复在演化过程中扮演重要角色,近百年中受到科学界中许多成员的支持。大野干在1970年的著作《基因重复造成的演化》(Evolutionbygeneduplication)中发展了这个理论。此外科学家认为,酵母菌的整个基因组,在1亿年前经历了重复作用。植物体内也常见基因组的完整重复现象,例如小麦

关于基因剪接的简介

  基因组中或基因组间发生遗传信息的重新组合,被称为DNA重组(DNA recombination),其中发生在基因组中的DNA重组又称DNA重排。包括同源重组、特异位点重组和转座重组等类型,广泛存在于各类生物。体外通过人工DNA重组可获得重组体DNA,是基因工程中的关键步骤。

关于基因探针的简介

  基因探针,即核酸探针,是一段带有检测标记,且顺序已知的,与目的基因互补的核酸序列(DNA或RNA)。基因探针通过分子杂交与目的基因结合,产生杂交信号,能从浩瀚的基因组中把目的基因显示出来。根据杂交原理,作为探针的核酸序列至少必须具备以下两个条件:  ①应是单链,若为双链,必须先行变性处理。  ②

关于基因测序的简介

  2022年8月,中国计量科学研究院、复旦大学成功研制中华家系1号(同卵双胞胎家庭)人源B淋巴细胞系全基因组DNA序列和全转录组RNA标准物质,该成果在基因组测试质量及计量标准交流会上正式发布。该系列标准物质填补了国内外空白,将为基因测序的可靠性提供保障。

关于基因转换的简介

  基因转换 (gene conversion) 是指遗传信息从一个分子向其同源分子单向传递的过程, 使受体序列部分或者全部被供体序列所替代, 而供体本身的序列不变。这种现象不仅在真菌中普遍存在, 在线虫和哺乳动物中也存在。迄今已知该现象在原核生物和真核生物中均普遍存在。

关于结构基因的简介

  结构基因是指决定某一种蛋白质分子结构的相应的一段DNA或染色体。在正常情况下,在需要某种或其有关的酶时,在调节基因和操纵基因的控制下等候在启动子(Promotor)位置上的RNA聚合酶开始转录,从而产生了与这些酶有关的结构基因的信使RNA,并由后者合成所需的酶。若其发生突变,便会产生失去活性的蛋

关于重叠基因的简介

  所谓重叠基因(overlapping gene)是指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上基因的组成部分。重叠基因有多种重叠方式。例如,大基因内包含小基因;前后两个基因首尾重叠一个或两个核苷酸;几个基因的重叠,几个基因有一段核苷酸序列重叠在一起,等等。重叠

关于LacZ基因的简介

  1969年,美国哈佛大学以Beckwith博士为首的研究小组,应用DNA分子杂交技术首次分离到lacZ基因后,该基因逐渐成为了一个广泛应用的报告基因。但是,在秀丽线虫中其主要应用于相对早期的环境暴露以及毒性的评价研究,应用已经很少 [2] 。LacZ基因编码的β一半乳糖苷酶(简称β-gal)是由

关于自杀基因的简介

  自杀基因(suicide gene),是指将某些病毒或细菌的基因导入靶细胞中,其表达的酶可催化无毒的药物前体转变为细胞毒物质,从而导致携带该基因的受体细胞被杀死,此类基因称为自杀基因。  应用自杀基因常用来治疗肿瘤和感染性疾病。例如将在肝癌细胞中可表达AF基因的调控区与水痘一带状疮疹病毒中的胸苷

关于超基因的简介

  操纵子是细菌中与同一种生化功能有关的几个基因(如控制色氨酸合成的有关基因)在基因组内聚成一簇而紧密连锁,并受一个基因调控。操纵子只在细菌中发现。在真核生物基因组内很少发现,真核生物的结构基因一般是单独调控的,但真核生物中也有称为超基因的结构。超基因(super gene)是指作用于一种性状或作用

关于重组蛋白的介绍

  重组蛋白的产生是应用了重组DNA或重组RNA的技术从而获得的蛋白质。体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。

关于组蛋白的相关介绍

  组蛋白是染色体基本结构蛋白,因富含碱性氨基酸Arg 和lys 而呈碱性,可与酸性的DNA紧密结合。组蛋白包含五个组分,分子质量为11-23ku,按照分子量由大到小分别称为H1、H3、H2A、H2B和H4。[1]  组蛋白(histones)真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱

关于等位基因的简介

  等位基因(allele),是指位于一对同源染色体相同位置上控制同一性状不同形态的基因。  注释:同源染色体是在二倍体生物细胞中,形态、结构基本相同的染色体,并在减数第一次分裂(参考减数分裂)的四分体时期中彼此联会(若是三倍体及其他奇数倍体生物细胞,联会时会发生紊乱),最后分开到不同的生殖细胞(即

关于基因治疗的简介

  基因治疗(gene therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,以达到治疗目的。其中也包括转基因等方面的技术应用,也就是将外源基因通过基因转移技术将其插入病人的适当的受体细胞中,使外源基因制造的产物能治疗某种疾病。从广义说,基因治疗还可包括从DNA水平采取

关于同源异形基因的简介

  控制果蝇长触角的基因发生突变,果蝇的前肢就可能长到应该生触角的部位上去。若控制胸部基因发生了突变,则胸部第3体节变成为长翅膀的第2体节,结果使本来应长2支翅膀的果蝇却生出4支翅膀。这种控制生物的体型结构的基因,被刘易斯称之为“同源异形盒基因”(homeobox genes,Hox)。

关于基因转染技术的简介

  基因转染技术将特定的遗传信息传递到真核细胞 中,这种技术不但革新了生物学和医学中许多基本问题的研究,也推动了诊断和治疗方面的分子技术 发展,并使基因治疗 成为可能。基因转染已广泛用于基因的结构和功能分析、基因表达与调控、基因治疗与转基因动物等研究。

关于持家基因的简介

  管家基因表达水平受环境因素影响较小,而且是在个体各个生长阶段的大多数,或几乎全部组织中持续表达,或变化很小,因此常存在于生物细胞核的常染色质中。它的表达只受启动序列或启动子与RNA聚合酶相互作用的影响,而不受其他机制调节。  管家基因高度保守并且在大多数情况下持续表达,因此管家基因常被用于分子技

关于原癌基因的简介

  肿瘤是由环境因素和遗传因素相互作用所导致的一类疾病,肿瘤的发生与基因的改变有关。原癌基因和抑癌基因都是在细胞生长、增殖调控中起重要作用的基因。原癌基因(细胞癌基因)是指存在于生物正常细胞基因组中的癌基因。正常情况下,存在于基因组中的原癌基因处于低表达或不表达状态,并发挥重要的生理功能。但在某些条

关于Hemgenix基因疗法的简介

  Hemgenix基因疗法是一种基于腺相关病毒载体的一次性基因疗法,由一个携带凝血因子IX基因的病毒载体组成,可通过使机体持续产生因子IX,即缺陷相关病毒(AAV),降低符合条件的乙型血友病(B型血友病)患者的异常出血率。

关于基因附加体的简介

  附加体亦称“游离体”。存在于细菌等微生物中的一类质粒。它既可以独立于宿主染色体进行复制,又可以依赖其与宿主染色体的同源结构可逆地整合进染色体,而成为染色体的一个部分。细胞丧失附加体时,一般只带来某些遗传性状的改变,而不影响它在正常条件下的生存。附加体常能通过细菌细胞的接触而转移,有时还可以带动宿

关于基因簇的简介

  功能相同或相关的许多基因聚集成簇,就形成一个基因簇。基因簇可以是由基因重复而产生的两个相邻的相关基因,也可以是由许多个甚至上百个相同的基因首尾衔接的串联排列,如rRNA基因和组蛋白基因。基因簇中也可以有假基因。在成簇的基因家族中通过染色体重排而分散到其他位置上的成员,被称为孤独基因(orphan

组蛋白修饰基因通路MEN1-基因

这个基因编码脑膜,一种与多发性内分泌肿瘤1型综合征相关的假定的肿瘤抑制因子。体外研究表明,脑膜定位于细胞核,具有两种功能性核定位信号,并通过JUND抑制转录激活,但这种蛋白的功能尚不清楚。在Northern blots上检测到两条信息,但未对较大的信息进行描述。选择性剪接导致多个转录变体。

组蛋白修饰基因通路HDAC2基因

该基因产物属于组蛋白脱乙酰基酶家族。组蛋白脱乙酰基酶通过形成大的多蛋白复合物起作用,并负责核心组蛋白(H2A、H2B、H3和H4)N端赖氨酸残基的脱乙酰化。这种蛋白通过与许多不同的蛋白质结合形成转录抑制复合物,包括哺乳动物锌指转录因子YY1。因此,它在转录调控、细胞周期进展和发育事件中起着重要作用。

组蛋白修饰基因通路TAF1基因

rna聚合酶ii启动转录需要70多种多肽的活性。协调这些活动的蛋白质是基础转录因子tfiid,它与核心启动子结合以正确定位聚合酶,充当组装其余转录复合物的支架,并充当调控信号的通道。tfiid由tata结合蛋白(tbp)和一组进化上保守的蛋白质(tbp相关因子或taf)组成。tafs可能参与基础转录

组蛋白修饰基因通路CHD4基因

该基因的产物属于SNF2 / RAD54解旋酶家族。 它代表核小体重塑和脱乙酰基酶复合物的主要成分,并且在表观遗传转录抑制中起重要作用。 皮肌炎患者会产生针对这种蛋白质的抗体。 该基因的体细胞突变与浆膜性子宫内膜肿瘤有关。 选择性剪接导致编码不同同工型的多个转录变体。