荧光分光光度计(分子荧光)

1、基本原理 在室温下分子大都处在基态的最低振动能级,当受到光的照射时,便吸收与它的特征频率相一致的光线,其中某些电子由原来的基态能级跃迁到第一电子激发态或更高电子激发态中的各个不同振动能级,这就是在分光光度法中所述的吸光现象。跃迁到较高能级的分子,很快通过振动弛豫、内转换等方式释放能量后下降到第一电子激发态的最低振动能级,能量的这种转移形式,称为无辐射跃迁。再由第一电子激发态的最低振动能级下降到基态的任何振动能级,并以光的形式放出它们所吸收的能量,这种光便称为荧光。 荧光分析法具有灵敏度高、选择性强、需样量少和方法简便等优点,它的测定下限通常比分光光度法低2~4个数量级,在生化分析中的应用较广泛。 荧光分析法是测定物质吸收了一定频率的光以后,物质本身所发射的光的强度。物质吸收的光,称为激发光;物质受激后所发射的光,称为发射光或荧光。如果将激发光用单色器分光后,连续测定相应的荧光的强度所得到的曲线,称为该荧光物......阅读全文

荧光光谱属于分子光谱吗

根本差别在于激发基态原子的外层电子跃迁的方式,发射光谱属于热致激发,即基态原子吸收热量后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线;分子荧光则是属于光致激发,基态原子受光辐射后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线。

荧光光谱仪单分子荧光检测方法分析

  单分子荧光检测。单分子荧光分析是实现单分子检测最灵敏的光分析技术。单分子荧光检测的关键在于确保被照射的体积中只有一个分子与激光发生作用以及消除杂质荧光的背景干扰。单分子荧光检测可提供单分子水平上生物分子反应的动力学信息,分子构象以及构象随时间的变化,因此尤其在生命科学领域中具有广阔的应用前景,为

分子荧光光谱核心技术

  光源:由于荧光样品的荧光强度与激发光的强度成正比,因此,作为一种理想的激发光源应具备:足够的强度、在所需光谱范围内有连续的光谱、强度与波长无关(即光源的输出是连续平滑等强度的辐射)、稳定的光强。常用的光源主要有氙灯,激光器等。  探测器: 荧光的强度通常比较弱,因此要求检测器有较高的灵敏度。一般

分子荧光光谱分析

分子荧光光谱分析编辑molecular fluorescence analysis当物质分子吸收了特征频率的光子,就由原来的基态能级跃迁至电子激发态的各个不同振动能级。激发态分子经与周围分子撞击而消耗了部分能量,迅速下降至第一电子激发态的最低振动能级,并停留约10-9秒(10的负9次方秒)之后,直接

分子荧光光谱实验报告

一、实验目的:    1.掌握荧光光度法的基本原理及激发光谱、发射光谱的测定方法;学会运用分子荧光光谱法对物质进行定性分析。    2.了解荧光分光光度计的构造和各组成部分的作用。    3.了解影响荧光产生的几个主要因素。二、实验内容:    测定荧光黄/水体系的激发光谱和发射光谱;    首先根

原子发射光谱法与原子荧光、分子荧光、分子磷光光谱法...

原子发射光谱法与原子荧光、分子荧光、分子磷光光谱法的差别 原子发射是利用高温等产生气态原子并将它们激发,收集测量回到基态时所发出的光,原子发射光谱的特点是复杂,一个原子可能有好多条谱线,可定性,也可定量。原子荧光,可分为两种,一种是x-ray荧光,是对于内层电子的激发,导致外层电子向内层跃迁,

发射光谱法与原子荧光、分子荧光、分子磷光法的差别?

原子发射是利用高温等产生气态原子并将它们激发,收集测量回到基态时所发出的光,原子发射光谱的特点是复杂,一个原子可能有好多条谱线,可定性,也可定量。原子荧光,可分为两种,一种是x-ray荧光,是对于内层电子的激发,导致外层电子向内层跃迁,产生的荧光。另一种是用特定光源去激发外层电子,并测量荧光。特点是

简介分子荧光光谱仪优势

  制样简单,试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析。  分析速度快。虽然测定用时与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。  多元素同时检出能力。可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分

简述分子荧光光谱仪劣势

  在经典分析中,影响谱线强度的因素较多,尤其是试样组份带来的光谱重叠等,所以对标准参比的组份要求较高。  难于作绝对定量分析,需要精确的标样做比较。含量(浓度)较大时,准确度较差。  对样品化合物有共轭性要求,应用不广泛.

分子荧光光谱分析作用

作用编辑对于稀溶液( 吸光度A=εcl≤0.05 )而言,其荧光强度F=2.3jI0εcl。式中j是荧光物质的荧光效率;I0为入射光强度;ε为荧光物质的摩尔吸光系数,c为荧光物质的浓度 ,l为样品池的厚度。该式表明,在稀溶液(A≤0.05)和I0及l不变的条件下,荧光强度与该物质的浓度成正比

如何使用分子荧光光谱仪

分子荧光光谱法又称分子发光光谱法或荧光分光光度法,即通常所谓的荧光分析法。该法是一种利用某一波长的光线照射试样,使试样吸收这一辐射,然后在发射出波长相同或波长较长的光线的化学分析方法。如果这种再发射约在 s内发生,则称为荧光;若能在 s或更长的时间后发生,则称磷光。分子荧光光谱法就是利用这种再发射的

如何使用分子荧光光谱仪

分子荧光光谱法又称分子发光光谱法或荧光分光光度法,即通常所谓的荧光分析法。该法是一种利用某一波长的光线照射试样,使试样吸收这一辐射,然后在发射出波长相同或波长较长的光线的化学分析方法。如果这种再发射约在 s内发生,则称为荧光;若能在 s或更长的时间后发生,则称磷光。分子荧光光谱法就是利用这种再发射的

分子荧光光谱仪操作步骤

分子荧光光谱仪操作步骤HITACHI F-4500型荧光光谱仪操作规程一、开机前准备 1.实验室温度应保持在15℃~30℃之间,湿度应保持在45%~70%之间。 2.确认样品室内无样品后,关上样品室盖。 二、开机 1.打开电源开关(POWER→ON)待风扇正常运转。 2.按(X。LAMR START

荧光光谱仪的分子荧光光谱关键技术指标介绍

  荧光光谱仪的光谱分辨率。光谱分辨率是指把光谱特征、谱带分解成为分离成分的能力。高级的荧光光谱仪分辨率可达0.5~1nm。  荧光光谱仪的频谱范围。高级的荧光光谱仪可覆盖200nm~1500nm。  荧光光谱仪中的波长准确度和波长重复性。波长准确度,是指波长的实际测定值与理论值(真值)的差,高端仪

原子发射光谱法与原子荧光、分子荧光、分子磷光法的差别

  原子发射是利用高温等产生气态原子并将它们激发,收集测量回到基态时所发出的光,原子发射光谱的特点是复杂,一个原子可能有好多条谱线,可定性,也可定量。  原子荧光,可分为两种,一种是x-ray荧光,是对于内层电子的激发,导致外层电子向内层跃迁,产生的荧光。另一种是用特定光源去激发外层电子,并测量荧光

分子荧光寿命

荧光寿命(lifetime):去掉激发光后,分子的荧光强度降到激发时最大荧光强度的1/e(备注:e为自然对数的底数,其值约为2.718)所需要的时间,称为荧光寿命.荧光分子处于S1激发态的平均寿命,可用下式表示:τ f = 1 /(kf + ΣK)(典型的荧光寿命在10-8~10-10s)  kf表

原子发射光谱和分子荧光光谱的区别

根本差别在于激发基态原子的外层电子跃迁的方式,发射光谱属于热致激发,即基态原子吸收热量后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线;分子荧光则是属于光致激发,基态原子受光辐射后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线。

分子荧光的激发光谱与发射光谱

任何荧光化合物都有两个特征光谱: 激发光谱和发射光谱,这是定性和定量分析的基本参数和依据。 激发光谱:荧光是光致发光,因此必须选择合适的激发波长。这可由激发光谱曲线来确定。绘制激发光谱曲线时选择荧光的最大发射波长为测量波长,改变激发光的波长,测定荧光强度的变化。以激发光波长为横坐标,荧光强度为纵坐标

单分子荧光染料——ATTO荧光染料

单分子荧光检测技术是近十年来迅速发展起来的一种超灵敏的检测技术,其检测尺度可以精确到纳米量级,是单分子检测的首选方法。该检测技术利用荧光标记来显示和追踪单个分子的构象变化、动力学、单分子之间的相互作用以及进行单分子操纵。而荧光染料作为重要的标记物在单分子检测中起到了举足轻重的作用。荧光染料,指吸收某

单分子荧光染料——ATTO荧光染料

单分子荧光检测技术是近十年来迅速发展起来的一种超灵敏的检测技术,其检测尺度可以精确到纳米量级,是单分子检测的首选方法。该检测技术利用荧光标记来显示和追踪单个分子的构象变化、动力学、单分子之间的相互作用以及进行单分子操纵。而荧光染料作为重要的标记物在单分子检测中起到了举足轻重的作用。荧光染料,指吸收某

分子荧光光谱关键技术指标

  荧光光谱仪的光谱分辨率。光谱分辨率是指把光谱特征、谱带分解成为分离成分的能力。高级的荧光光谱仪分辨率可达0.5~1nm。  荧光光谱仪的频谱范围。高级的荧光光谱仪可覆盖200nm~1500nm。  荧光光谱仪中的波长准确度和波长重复性。波长准确度,是指波长的实际测定值与理论值(真值)的差,高端仪

分子荧光光谱分析检测设置

进行分子荧光光谱分析的仪器称荧光分光光度计。它由5 部分组成:光源;单色器;样品池;检测器;显示装置 。荧光激发光谱和发射光谱,可用来鉴定有机化合物。冷却至 77K ,可获得高度分辨的低温荧光光谱,有利于鉴别 。还可采用同步扫描荧光法,及1~4阶的导数荧光光谱和三维光谱等,来鉴别多组分荧光物质。

分子荧光光谱在食品领域的应用

在食品领域的应用该领域主要用于食品中矿物质及金属元素、氨基酸、维生素、菌类污染、添加剂、防腐剂、食品包装有害物质、农药残留等的分析检测。特别是与HPLC、TLC、FIA等技术的结合可以更好的达到食品中各种物质的检测效果。目前我国食品标准日趋国际化,对于食品分析的要求也越来越趋向于灵敏和微量化。荧光分

分子荧光光谱仪有哪些优势?

  1、制样简单,试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析。  2、分析速度快。虽然测定用时与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。  3、多元素同时检出能力。可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征谱线

分子荧光和分子磷光

  分子和原子一样,也有它的特征分子能级,分子内部的运动可分为价电子运动、分子内原子在平衡位置附近的振动和分子绕其重心的转动。因此分子具有电子能级、振动能级和转动能级。  分子从外界吸收能量后,就能引起分子能级的跃迁,即从基态跃迁到激发态,分子吸收能量同样具有量子化的特征,即分子只能吸收等于二个能级

荧光光谱

荧光光谱:荧光光谱包括激发谱和发射谱两种。激发谱是荧光物质在不同波长的激发光作用下测得的某一波长处的荧光强度的变化情况,也就是不同波长的激发光的相对效率;发射谱则是某一固定波长的激发光作用下荧光强度在不同波长处的分布情况,也就是荧光中不同波长的光成分的相对强度。 既然然激发谱是表示某种荧光物质在不同

X射线荧光光谱和荧光光谱-区别

一、理论上。荧光光谱是比较宽的概念,包括了X射线荧光光谱。二、从仪器分析上,荧光光谱分析可以分为:X射线荧光光谱分析、原子荧光光谱分析,1)X射线荧光光谱分析——发射源是Rh靶X光管2)原子荧光光谱分析——可用连续光源或锐线光源。常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、

分子荧光和原子荧光的区别

分子荧光和原子荧光都是光致发光,二者都是价电子跃迁,但因为前者会伴随有振动能级和转动能级的跃迁,所以是连续发射,而后者是分立的线发射;前者分析物一般是处于溶液状态,后者需要转化成气态原子;前者测定的主要是含有共轭不饱和体系的化合物,而后者测定的主要是金属元素的含量;前者采用的主要是氙灯或高压汞灯,而

分子荧光镜像规则

  基态上的各振动能级分布与第一激发态上的各振动能级分布类似;基态上的零振动能级与第一激发态的二振动能级之间的跃迁几率最大,相反跃迁也然。