Antpedia LOGO WIKI资讯

Nature重磅!PacBio三代测序技术又一重大应用

近期,《Nature Biotechnology》上在线发表了一篇由西奈山伊坎医学院,生物信息学公司Sema4,纽约大学和佛罗里达大学的科学家们联合开展的研究结果。在这项新工作中,科学家使用PacBio长读长单分子实时测序技术(SMRT 测序技术)和新型算法进行微生物组菌株鉴定,提出不同种的微生物中广泛存在自己独特的DNA甲基化修饰模式,能被看成是一个天然的“条形码”,结合表观遗传标签和碱基序列信息获得更高分辨率的微生物组菌种分型。 微生物在我们的生活中无所不在,从键盘和手机的表面到我们身上和体内,例如我们的口腔或肠道,都可以找到它们。越来越多的研究表明,微生物的异常已经极大程度的影响了我们的健康情况,涉及包括传染病,癌症和诸如克罗恩病,溃疡性结肠炎和糖尿病等复杂疾病。高分辨率鉴定微生物组中的菌株类别,确定群落是否处于异常状态,就显得至关重要。 目前大多数微生物组菌种分型的技术如16S rRNA 测序或短读长测序技术提供......阅读全文

DNA甲基化检测技术全攻略

近年来涌现出不少DNA甲基化的检测技术,少说也有十几种。大致可以分为两类:特异位点的甲基化检测和全基因组的甲基化分析,后者也称为甲基化图谱分析(methylation profiling)。下面大家介绍一些常用的方法。一、特异位点的甲基化检测1. 甲基化特异性PCR(MS-PCR)这种方法经济实用,

DNA甲基化检测技术全攻略

近年来涌现出不少 DNA 甲基化的检测技术,少说也有十几种。大致可以分为两类:特异位点的甲基化检测和全基因组的甲基化分析,后者也称为甲基化图谱分析 (methylation profiling)。下面大家介绍一些常用的方法。 特异位点的甲基化检测 甲基化特异性 PCR (MS-PCR)

DNA甲基化检测技术全攻略

近年来涌现出不少DNA甲基化的检测技术,少说也有十几种。大致可以分为两类:特异位点的甲基化检测和全基因组的甲基化分析,后者也称为甲基化图谱分析(methylation profiling)。下面大家介绍一些常用的方法。一、特异位点的甲基化检测1. 甲基化特异性PCR(MS-PCR)这种方法经济实用,

上海交大破译DNA磷硫酰化修饰基因组分布图谱

  近日,上海交通大学生命科学技术学院、微生物代谢国家重点实验室在DNA磷硫酰化修饰方面取得突破,《Nature Communications》在线发表了由德林教授研究小组的最新进展《Genomic mapping of phosphorothioates reveals partial modif

五花八门的DNA甲基化检测(下)

  近年来涌现出不少DNA甲基化的检测技术,少说也有十几种。大致可以分为两类:特异位点的甲基化检测和全基因组的甲基化分析,后者也称为甲基化图谱分析(methylation profiling)。下面生物通给大家介绍一些常用的方法。   全基因组的甲基化分析   基于芯片的甲基化图谱分析  

PacBio推出首款检测DNA碱基修饰的软件

  美国第三代测序公司Pacific Biosciences近日宣布推出一个独特的解决方案,可利用PacBio® RS测序仪检测与表观遗传学调控和DNA损伤相关的DNA碱基修饰。   DNA碱基修饰(如甲基化)在多个生物进程中扮演了重要角色,包括生长和衰老、免疫、细菌致病性以及疾病发展。Pac

单分子实时测序技术的三大优势

  Biosciences的单分子实时测序技术(SMRT)因其出色的读长而引人注目。然而,因通量较低,且一直被错误率高的流言所困扰,SMRT技术似乎有些被忽视。近日,几位著名科学家在《Genome Biology》杂志上发表文章,试图消除这些误解,为SMRT正名。   这篇文章的通讯

Nature子刊:突破性测序技术绘制甲基化图谱

  通过一种新的DNA测序技术,研究人员首次绘制了致病菌全基因组甲基化标记图谱。通过比较相关菌株之间的甲基化模式,他们发现了称作噬菌体的病毒感染细菌显著改变宿主的一种方式。   布莱根妇女医院(Brigham and Women"s Hospital)、霍华德休斯医学研究所研究员Matthew K

研究人员首次精准解析结核分枝杆菌复合群甲基化图谱

  结核病是全球最常见的传染病之一,据WTO“2015年全球结核病年报”报告,2014年全球新增感染人数960万,死亡150万,新增耐多药结核(MDR)病例48万(其中我国新增结核感染病例93万,居全球第三位),其目前仍是全球第二大传染病。结核分枝杆菌复合群(Mycobacterium tuberc

北京基因组所等首次精准解析结核分枝杆菌复合群甲基化

  结核病是全球最常见的传染病之一,据WTO“2015年全球结核病年报”报告,2014年全球新增感染人数960万,死亡150万,新增耐多药结核(MDR)病例48万(其中我国新增结核感染病例93万,居全球第三位),其目前仍是全球第二大传染病。结核分枝杆菌复合群(Mycobacterium tuberc

Nature:RNA 修饰研究有助表观转录组学进一步发展

  这是一个与 mRNA 结合的细菌核糖体的分子模式图,该核酸蛋白复合体正在合成蛋白质。  随着科研人员逐渐揭开 RNA 修饰的奥秘,帮助我们了解表观转录组学(epitranscriptomics)的工具也变得越来越多了。  2004 年,以色列特拉维夫大学(Tel Aviv University

单分子测序助力细菌甲基化组的分析

  New England Biolabs联合Pacific Biosciences的研究人员利用PacBio RS系统对6种细菌基因组进行了重测序,不仅鉴定出细菌基因组中新的胞嘧啶和腺嘌呤甲基化位点,还鉴定出介导这些表观遗传学标志的甲基转移酶。该研究成果近日发表在《Nucleic Acid

高通量测序技术的原理及各平台优势和实践应用的分析

  随着人类基因组计划(human genome project )在2003年顺利完成,基因组测序技术取得了长足的进步,这直接导致了每兆基因组成本的大幅下降以及检测的基因组数量越来越多。人们对基因组的复杂性深感震惊,这也引导着测序技术的进一步发展。最近的一些突破性技术使得测序技术在更短的时间内可以

高通量测序技术的原理及各平台优势和实践应用的分析

  随着人类基因组计划(human genome project )在2003年顺利完成,基因组测序技术取得了长足的进步,这直接导致了每兆基因组成本的大幅下降以及检测的基因组数量越来越多。人们对基因组的复杂性深感震惊,这也引导着测序技术的进一步发展。最近的一些突破性技术使得测序技术在更短的时间内可以

Nature Genetics:全基因组测序领域的开拓性进展

  当我们提到DNA的甲基化,通常是指胞嘧啶(C)碳环上5号碳原子的甲基化,5-甲基胞嘧啶(5mC)。实际上,在原核生物中存在着3种DNA甲基化型式,5mC、4mC(4-甲基胞嘧啶)和6mA(6-甲基腺嘌呤),6mA起主导作用,缺乏6mA可导致一些细菌的死亡。科学家们曾经以为具有重要生理功能的DNA

暨南大学Nature子刊发表重要测序成果

  随着测序成本的持续下降,人们已经破译了许多生物的基因组。不过新一代测序产生的读取数据大多比较短,在分析重复元件的时候存在一定的技术限制,而这样的元件在人类基因组很常见。为了更好的描述人类的复杂基因组区域,可能还需要用到其他的基因组分析技术。  暨南大学和南加州大学的研究人员通过长读取测序技术从头

新一代测序十年记:后起之秀PacBio

  在新一代测序技术崛起的早期,市场主要被Illumina、Life Tech和Roche这三家公司占领。偶尔也有一些新的测序平台出现,但大多是雷声大雨点小,不久便没了下文。面对这些强大、成熟的系统,新平台要想站稳脚跟,的确不是件容易的事。  在2010年的AGBT年会上,Pacific Biosc

关于三代基因测序,你所需要知道的都在这儿!

  一、导读:  在大部分投资者对“二代测序”(NGS)还没有搞清技术细节的情况下,“三代测序”(3GS)又火了。  6月17日,医药板块中基因测序相关标的在“三代测序技术获得重大突破”的新闻影响上出现明显涨幅,我们也接到较多投资者对相关新闻的背景及观点的询问。为此,我们结合各方面资料归纳总结了三代

基因测序“摩尔定律”初现,“三代测序”要革“二代”的命?

  在“二代测序”(NGS)尚未迎来投资热潮的情况下,技术突破捷报连连的“三代测序”(3GS)又进入到了投资人的视野中。1986年,第一台商用基因测序设备正式出现,到第二代测序设备出现,期间间隔了19年时间。而第二代设备问世,到第三代设备的诞生,仅仅用了5年,基因测序设备的更新换代速度正在不断加快。

Nature:剖析重要的疾病蛋白

  找到某种疾病的致病突变,往往只是理解疾病的第一步。而Rett综合症的情况更加复杂,因为该疾病中的突变基因控制着一系列其他基因。Rett综合症属于孤独症谱系障碍,是主要影响女孩的单基因神经性疾病。   爱丁堡大学的Adrian Bird教授与哈佛医学院的Michael Greenberg教授

2016年的年度技术是什么?Nature Methods最新公布

  在2016年的最后一个工作日,Nature Methods赶着发布了2017年的新刊,并在其中公布了2016年度技术,你们肯定会猜年度技术就是CRISPR系统,然并卵,对于前瞻性的每年盘点的年度技术来说,一个并不常见的名词:Epitranscriptome analysis(表观转录组学分析,生

国内三代测序技术瞄准遗传病诊断

  在过去的2016年,第三代测序获得了完美突破,首次登上了太空,首次完成人类基因组测序,首次确定了二代测序未能检测到的致病性大片段缺失突变,最终确诊了一种罕见遗传病......第三代测序也被Science纳入2016年十大科学突破之一。  第三代测序技术避免了第二代测序读长短的缺点,在临床上具有无

三分钟了解4代基因测序技术

  基因检测技术是近年来伴随“精准医疗”概念的提出而迅速发展起来的一门科学技术,它可以从基因组机制上阐释遗传学、发育生物学、进化生物学等学科的经典概念,在全基因组水平延伸了染色体高级构象、细胞异质性、功能模块等新概念,为精准医学开辟了应用性新领域。  近年来,随着分子水平的基因检测技术平台不断发展和

第三代DNA测序技术

测序技术在近两三年中又有新的里程碑。以PacBio公司的SMRT和Oxford Nanopore Technologies纳米孔单分子测序技术,被称之为第三代测序技术。与前两代相比,他们最大的特点就是单分子测序,测序过程无需进行PCR扩增。其中PacBio SMRT技术其实也应用了边合成边测序的思想

九大测序平台对比(五)

7.The PacBio RS system企业: Pacific Biosciences推出时间: 2010年2月开始早期试用主流型号: PacBio RS样品要求: 1kb以下500ng,纯化的基因组 DNA, BACs, cDNA 文库 或PCR 产物测序原理: 边合成边测序,single m

盘点:分子诊断常用技术50年的沿革与进步

  一、基于分子杂交的分子诊断技术  上世纪60年代至80年代是分子杂交技术发展最为迅猛的20年,由于当时尚无法对样本中靶基因进行人为扩增,人们只能通过已知基因序列的探针对靶序列进行捕获检测。其中液相和固相杂交基础理论、探针固定包被技术与cDNA探针人工合成的出现,为基于分子杂交的体外诊断方法进行了

一文读懂分子诊断技术、PCR技术、基因测序技术

  分子诊断技术是指以DNA和RNA为诊断材料,用分子生物学技术通过检测基因的存在、缺陷或表达异常,从而对人体状态和疾病作出诊断的技术。其基本原理是检测DNA或RNA的结构是否变化、量的多少及表达功能是否异常,以确定受检者有无基因水平的异常变化,对疾病的预防、预测、诊断、治疗和预后具有重要意义。通俗

一文读懂分子诊断常用技术

  分子诊断技术是指以DNA和RNA为诊断材料,用分子生物学技术通过检测基因的存在、缺陷或表达异常,从而对人体状态和疾病作出诊断的技术。其基本原理是检测DNA或RNA的结构是否变化、量的多少及表达功能是否异常,以确定受检者有无基因水平的异常变化,对疾病的预防、预测、诊断、治疗和预后具有重要意义。通俗

这家知名三代测序公司连续亏损 卖股换钱能否绝境逢生

  江河日下,Pacific Biosciences连续亏损  自两年前(2015年1月),美国总统奥巴马在国情咨文中提出了“精准医学计划”(Precision Medicine Initiative)之后,“精准医疗”便成为全球健康领域的热门话题,这直接推动了基因测序以及建立在其基础上的分子诊断领

2014年度NSFC-ISF合作研究项目初审结果

  经过公开征集,今年国家自然科学基金委员会(NSFC)共收到2014年度中以NSFC-ISF合作研究项目申请61份。经初步审查并与以方核对清单,确定有效申请58份。现将通过初审的项目公布如下: 序号 科学部编号 项目名称 中方申请人中方单位名称 以方申请人以方单位名