Antpedia LOGO WIKI资讯

令人意外!细菌DNA遭受压缩时仍保持它的基因表达

细菌引起许多严重疾病,如食物中毒和肺炎。科学家们面临的挑战是,引起疾病的细菌是非常有弹性的。比如,当诸如大肠杆菌之类的细菌经历饥饿时,它们会大规模地重新组装它们的DNA,从而使得它们能够在应激条件下存活下来。 为了实现这一壮举及提高存活机会,大肠杆菌菌株显著增加一种被称作Dps的蛋白的数量。这种蛋白将细菌DNA压缩成致密的水晶状复合物并保护其免受损伤。虽然之前的研究已表明Dps保护细菌免受饥饿和其他的应激因素,但是科学家们并不知道这种特殊的蛋白是如何发挥作用的。 在一项新的研究中,来自荷兰卡夫利纳米科学研究所、格罗宁根大学、代尔夫特理工大学、美国罗彻斯特大学和俄亥俄州立大学的研究人员描述了Dps有助细菌在应激条件下存活下来的一些独特的特征。相关研究结果发表在2018年8月23日的Cell期刊上,论文标题为“Global DNA Compaction in Stationary-Phase Bacteria Does Not......阅读全文

令人意外!细菌DNA遭受压缩时仍保持它的基因表达

  细菌引起许多严重疾病,如食物中毒和肺炎。科学家们面临的挑战是,引起疾病的细菌是非常有弹性的。比如,当诸如大肠杆菌之类的细菌经历饥饿时,它们会大规模地重新组装它们的DNA,从而使得它们能够在应激条件下存活下来。 为了实现这一壮举及提高存活机会,大肠杆菌菌株显著增加一种被称作Dps的蛋白的数量。这种

令人意外!细菌DNA遭受压缩时仍保持它的基因表达

  细菌引起许多严重疾病,如食物中毒和肺炎。科学家们面临的挑战是,引起疾病的细菌是非常有弹性的。比如,当诸如大肠杆菌之类的细菌经历饥饿时,它们会大规模地重新组装它们的DNA,从而使得它们能够在应激条件下存活下来。 为了实现这一壮举及提高存活机会,大肠杆菌菌株显著增加一种被称作Dps的蛋白的数量。这种

Cell:令人意外!细菌DNA遭受压缩时仍保持它的基因表达

  细菌引起许多严重疾病,如食物中毒和肺炎。科学家们面临的挑战是,引起疾病的细菌是非常有弹性的。比如,当诸如大肠杆菌之类的细菌经历饥饿时,它们会大规模地重新组装它们的DNA,从而使得它们能够在应激条件下存活下来。 为了实现这一壮举及提高存活机会,大肠杆菌菌株显著增加一种被称作Dps的蛋白的数量。这种

用DNA芯片技术检测基因的表达

一、芯片制备基因芯片的制备主要有两种基本方法,一是在片合成法,另一种方法是点样法。在片合成法是基于组合化学的合成原理,它通过一组定位模板来决定基片表面上不同化学单体的偶联位点和次序。在片合成法制备DNA芯片的关键是高空间分辨率的模板定位技术和固相合成化学技术的精巧结合。目前,已有多种模板技术用于基因

用DNA 芯片技术检测基因的表达

实验概要生物芯片是将生命科学研究中所涉及的不连续的分析过程(如样品制备、化学反应和分析检测),利用微电子、微机械、化学、物理技术、计算机技术在固体芯片表面构建的微流体分析单元和系统,使之连续化、集成化、微型化。生物芯片技术主要包括四个基本要点:芯片方阵的构建、样品的制备、生物分子反应和信号的检测。1

用DNA芯片技术检测基因的表达

一、芯片制备基因芯片的制备主要有两种基本方法,一是在片合成法,另一种方法是点样法。在片合成法是基于组合化学的合成原理,它通过一组定位模板来决定基片表面上不同化学单体的偶联位点和次序。在片合成法制备DNA芯片的关键是高空间分辨率的模板定位技术和固相合成化学技术的精巧结合。目前,已有多种模板技术用于基因

科学家发现细菌基因表达常规机理

     美国纽约大学兰贡(Langone)医学中心的科学家发现和阐述了细菌体内控制转录延伸(transcription  elongation)的常规机理。在4月23日出版的《科学》杂志上,他们表示,该机理依赖游离核糖体和核糖核酸聚合酶(RNAP)之间的协同作用,因为这种协同作用使得转录率对应于转

科学家发现细菌基因表达常规机理

  美国纽约大学兰贡(Langone)医学中心的科学家发现和阐述了细菌体内控制转录延伸(transcription elongation)的常规机理。在4月23日出版的《科学》杂志上,他们表示,该机理依赖游离核糖体和核糖核酸聚合酶(RNAP)之间的协同作用,因为这种协同作用使得转录率对应于

反义RNA的调控细菌基因的表达功能

反义RNA对编码CAP的基因的调控作用已如前述。这里再介绍一下micF RNA对ompF基因的表达的调控。ompF蛋白质是大肠杆菌的外膜蛋白的主要成分这一。micF RNA是从另一基因(ompC基因)附近的DNA序列转录而来,和o-mpFn RNA的5'端有70%的序列互补,因此在体外mic

真菌细菌如何影响基因表达和肿瘤存活

    共聚焦显微镜下可见白色念珠菌生物膜代谢物刺激SCC25细胞  一项由巴西São Paulo州立大学(UNESP)的一组研究人员进行的体外研究显示了真菌和细菌如何激活与头颈部肿瘤相关的基因,由于生物膜的代谢(这些微生物以一种有结构和协调的方式自组织的群落)通过有利于肿瘤发展和抵抗治疗所需的细胞