Antpedia LOGO WIKI资讯

基因重排与基因重组的区别

基因重排:通过基因的转座,DNA的断裂错接而使正常基因顺序发生改变基因重组: 是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。也就是说,,基因重排是一个基因内DNA排列发生改变,,而使这个基因改变了,如出现新的基因就是靠这种方法,而基因重组却是几个不同基因互相改变位置,,而使的基因组合改变,,常在遗传上出现,,如子代就是父代经过基因重组然后发育产生的,,这个只会出现新性状而不会产生新基因......阅读全文

正粘病毒遗传与变异

甲型流感病毒每个核苷酸在每个复制周期中的突变机率大约是15×10-5,与其它RNA病毒的突变率相似。但是,由于流感病毒的基因组分为8个或7个不相同的片段,在病毒增殖过程中很容易发生基因重排,因而使流感病毒的抗原性和致病性很容易发生变异。 (1)病毒变异的类型A.抗原性变异〓抗原性变异

非法重组频率挖掘优质蛋白玉米修饰基因测定

  12月10日,中国科学院分子植物科学卓越创新中心/植物生理生态研究所巫永睿研究组团队在Communications Biology 杂志上在线发表题为High frequency DNA rearrangement at qγ27 creates a novel allele for Quali

石蜡包埋组织的DNA提取及其应用

  近10年来,现代分子生物学技术越来越广泛地被用于人类疾病研究的诸领域,为了解病理状态下基因组DNA的变化积累了新资料。目前认为,人类基因组并非人们想像的那样稳定,诸如基因重排、扩增、缺失,突变和DNA甲基化类型改变等时有发生,这些改变对于基因表达和调控,以及疾病过程的发展与转归等方面均具有重要意

石蜡包埋组织的DNA提取及其应用

近10年来,现代分子生物学技术越来越广泛地被用于人类疾病研究的诸领域,为了解病理状态下基因组DNA的变化积累了新资料。目前认为,人类基因组并非人们想像的那样稳定,诸如基因重排、扩增、缺失,突变和DNA甲基化类型改变等时有发生,这些改变对于基因表达和调控,以及疾病过程的发展与转归等方面均具有重要意义。

免疫系统和表观遗传学调控:一个新的前沿领域

   表观遗传学(epigenetics)研究转录前基因在染色质水平的结构修饰对基因功能的影响,这种修饰可通过细胞分裂和增值周期进行传递。表观遗传学已成为生命科学中普遍关注的前沿,在功能基因组时代尤其如此。免疫系统被认为是一个解析表观遗传学调控机制的良好模型,而且免疫细胞伯分

血液分子生物学检验技术及临床应用

血液分子生物学检验技术主要包括PCR技术、DNA测序技术、限制性片段长度多态性(RFLP)、转基因技术及基因芯片(DNA-chip)技术等分子生物学技术。目前这些技术已应用于血液病基因分析、基因诊断、白血病分型、指导治疗、判断预后和微小残留病检测等方面。(1)核酸分子杂交技术原理和方法1)South

分子生物学检查的方法及在血液学中的应用

1.分子生物学检查的方法血液分子生物学检验技术主要包括PCR技术、DNA测序技术、限制性片段长度多态性(RFLP)、转基因技术及基因芯片(DNA-chip)技术等分子生物学技术。目前这些技术已应用于血液病基因分析、基因诊断、白血病分型、指导治疗、判断预后和微小残留病检测等方面。2.分子生物学检查在血

血液分子生物学检验技术及临床应用

血液分子生物学检验技术主要包括PCR技术、DNA测序技术、限制性片段长度多态性(RFLP)、转基因技术及基因芯片(DNA-chip)技术等分子生物学技术。目前这些技术已应用于血液病基因分析、基因诊断、白血病分型、指导治疗、判断预后和微小残留病检测等方面。 (1)核酸分子杂交技术原理和方法 1)So

血液病的分子生物学检查及其应用

血液分子生物学检验技术主要包括PCR技术、DNA测序技术、限制性片段长度多态性(RFLP)、转基因技术及基因芯片(DNA-chip)技术等分子生物学技术。目前,这些技术在血液学检验领域已得到广泛应用,如应用于血液病基因分析、基因诊断、白血病分型、指导治疗、判断预后和微小残留病检测等方面。随着分子生物

血液分子生物学检验技术及临床应用

血液分子生物学检验技术主要包括PCR技术、DNA测序技术、限制性片段长度多态性(RFLP)、转基因技术及基因芯片(DNA-chip)技术等分子生物学技术。目前这些技术已应用于血液病基因分析、基因诊断、白血病分型、指导治疗、判断预后和微小残留病检测等方面。(1)核酸分子杂交技术原理和方法1)South

免疫球蛋白基因的结构和抗体多样性

   Ig分子是由三个不连锁的Igκ、Igλ和IgH基因所编码。Igκ、Igλ和IgH基因定位于不同的染色体上(表2-5)。编码一条Ig多肽链的基因是由在胚系中多个分隔的DNA片段(基因片段)经重排而形成的。1965年Dreyer和Bennet首先提出假说,认为Ig的V区和C区是

免疫学知识提纲(六)

第三篇 免疫器官与免疫细胞中枢免疫器官,由骨髓及胸腺组成,多能造血干细胞在这些部位发育成熟为免疫细胞,即执行生成免疫细胞的功能;外周淋巴器官,由淋巴结、脾脏及扁桃腺组成,成熟免疫细胞在这些部位执行应答功能。单核细胞和淋巴细胞经血液循环及淋巴循环,进出外周淋巴组织及淋巴器官,构成免疫系统的完整网络。&

欧盟批准辉瑞靶向抗癌药Xalkori治疗ROS1阳性非小细胞肺癌

  美国制药巨头辉瑞(Pfizer)研发的口服靶向抗癌药Xalkori(crizotinib,克唑替尼)近日喜获欧盟委员会(EC)批准,用于ROS1阳性晚期非小细胞肺癌(NSCLC)成人患者中的治疗。此前,Xalkori已获欧盟批准用于ALK阳性晚期非小细胞肺癌(NSCLC)成人患者。在美国,Xal

FDA批准辉瑞抗癌药Xalkori治疗ROS1阳性非小细胞肺癌

  美国制药巨头辉瑞(Pfizer)研发的口服靶向抗癌药Xalkori(crizotinib)近几个月来在欧美监管方面喜讯不断。去年底,Xalkori一线治疗间变性淋巴瘤激酶(ALK)阳性非小细胞肺癌(NSCLC)获欧盟批准。而就在最近,Xalkori也喜获美国FDA批准用于治疗ROS1阳性非小细胞

热门华人女科学家Nature Genetics发表重要癌症成果

  急性淋巴细胞白血病ALL是一种相当普遍的癌症,约占儿童癌症的30%。B-ALL是最常见的一种急性淋巴细胞白血病。在这种疾病中,未成熟白细胞(B淋巴母细胞)在患者的血液和骨髓里快速增殖。  华盛顿大学的研究团队通过测序鉴定了B-ALL的新亚型。他们十月十七日在Nature Genetics杂志上发

流式细胞术在血液学中的应用

  DNA倍体分析及细胞周期分析    在细胞周期内,DNA含量随细胞内时相发生周期性变化,正常情况下,大多数细胞处于休止期(Go), G1期细胞虽有DNA合成,但DNA含量仍为2N,为二倍体细胞,;处于活跃的DNA合成期(S期)的细胞DNA含量为2N-4N;正经历细胞分裂(G2/M期)的细胞

微流控芯片与基因诊断关系的研究进展

微流控芯片已经广泛于医学、生物、电子、流体、化学等领域,且微流控芯片可把样品制备、反应、分离、检测、扩增、分析等集成到一块几微米至几百微米尺度的芯片上并自动完成所有基本过程。目前,微流控芯片已经广泛地应用到医学基因诊断方面,例如基因多态性检测、基因高效性测序、基因快速性扩增等,为此,本文主要对微流控

信达生物伙伴Incyte强效FGFR抑制剂pemigatinib在美欧进入审查

  Incyte公司近日宣布其靶向抗癌药pemigatinib的营销授权申请(MAA)已被欧洲药品管理局(EMA)受理,该药用于治疗先前已接受过至少一种系统疗法后病情复发或难治、携带成纤维细胞生长因子受体2(FGFR2)融合或重排的局部晚期或转移性胆管癌(cholangiocarcinoma)成人患

临床基因检验诊断报告模式专家共识

  临床基因检验已覆盖了肿瘤、遗传病、血液病、感染性疾病、神经精神性疾病、器官移植、出生缺陷、个体化药物治疗等多个领域[1,2,3,4,5,6,7,8],临床基因检验诊断报告对机体易感性评估、疾病诊断、预后、治疗监测、遗传咨询、健康管理以及家庭生育计划制定等均具有重要的参考价值。因此,临床基因检验诊

临床基因检验诊断报告模式怎么写?

临床基因检验已覆盖了肿瘤、遗传病、血液病、感染性疾病、神经精神性疾病、器官移植、出生缺陷、个体化药物治疗等多个领域,临床基因检验诊断报告对机体易感性评估、疾病诊断、预后、治疗监测、遗传咨询、健康管理以及家庭生育计划制定等均具有重要的参考价值。因此,临床基因检验诊断报告应该明确、简洁、准确可靠,并具有

微流控芯片与基因诊断关系的研究进展

微流控芯片已经广泛于医学、生物、电子、流体、化学等领域,且微流控芯片可把样品制备、反应、分离、检测、扩增、分析等集成到一块几微米至几百微米尺度的芯片上并自动完成所有基本过程。目前,微流控芯片已经广泛地应用到医学基因诊断方面,例如基因多态性检测、基因高效性测序、基因快速性扩增等,为此,本文主要对微流控

流式细胞术在血液学中的应用(三)

4.杂合型白血病   真正的双系列表型白血病是伴有t(9;22)或有11q23 MLL(myeloid/lymphoid or mixed lineage leukemia髓/淋系或混合性白血病)基因重排的病人,以往报道

关于抗体种类繁多的原因

人类生活在杂乱多变的环境中,每时每刻都会触摸到各式各样的微生物,受到一些相似抗原物质的侵扰,从而使机体致病。为了抵御这些外来侵扰,使自身得以持续生存,人体必须构成几十万、几百万甚至更多种相应的特异性抗体以抵挡外界的抗原物质,才华免遭其害,保护自己。咱们会从抗体的发作及多样性进行其原因的论述与剖析。1

遗传学家对白血病成因有更深一步了解

  根据美国和英国研究人员的最新研究成果显示,基因重排是造成儿童白血病的主要成因之一。而基因重排被认为是人体免疫系统抗体多样性的根本原因之一。这一研究成果发表在期刊Nature Genetics上。   研究人员介绍说,患有白血病的患者会在血液中产生大量不正常的血液细胞,而急性白血病则是最为常

聚合酶链反应(PCR)在石蜡包埋组织中的应用

  PCR是一种模拟天然DNA复制过程,在体外将特异性目的DNA片段序列进行高效扩增的分子生物学新技术。自八十年代由美国Muilis发明这项技术以来,由于具有快速、敏感、特异及高效的特点,得以迅速推广,并从这一分子生物学基本技术扩展出一系列分子生物学研究方法。PCR扩增所需的模板DNA来源

靶向FGF受体 Incyte胆管癌创新疗法获FDA优先审评资格

  今日,Incyte公司宣布,美国FDA已经接受其FGFR1/2/3抑制剂pemigatinib的新药申请(NDA),用于治疗携带FGFR2基因融合或重排的局部晚期或转移性经治肝内胆管癌(iCCA)患者。FDA同时授予该申请优先审评资格,预计将在明年5月30日前作出回复。  胆管癌是一种罕见的恶性

Nat Genet:靶向作用染色体重排可治疗儿童恶性白血病

  近日,一项刊登于国际著名杂志Nature Genetics上的研究论文中,来自圣裘德儿童医院的研究人员通过研究发现,急性淋巴细胞白血病(ALL)的儿童机体中除了影响MLL基因的染色体重排外或许基因突变较少,相关研究或可以帮助靶向做种这种染色体重排来改善患儿的生存率。  ALL往往在儿童出生的1年

分子病理诊断的现状与思考

分子病理诊断,是指应用分子生物学技术,从基因水平上检测细胞和组织的分子遗传学变化,以协助病理诊断和分型、指导靶向治疗、预测治疗反应及判断预后的一种病理诊断技术,是分子生物学、分子遗传学和表观遗传学的理论在临床病理中的应用,属转化医学的范畴。分子病理诊断又称分子病理检查、分子病理检测、分子病理技术,称

科学家开展了对新型猪流感病毒的监测

  随着季节性流感病例在美国各地的减少,近日来自堪萨斯州立大学的研究者开始了对新一代流感病毒毒株的监测工作,这项工作是以对猪体内的流感病毒开始研究的,研究人员利用国立卫生研究所提供了资助进行了猪体内流感病毒的大量研究。  研究者Richt讲道,猪流感在不断发生改变,其存在一种持续的突变比率,有时候猪

基因重组和基因重排的区别

基因重排:通过基因的转座,DNA的断裂错接而使正常基因顺序发生改变。基因重排是一个基因内DNA排列发生改变,而使这个基因改变了,如出现新的基因就是靠这种方法基因重组: 是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。基因重组却是几个不同基因互相改变位置,而使的