Antpedia LOGO WIKI资讯

硒的新型氢化物有望成为高温超导体

记者4月21日从中科院合肥物质科学研究院获悉,该院固体物理研究所极端环境量子中心研究团队,与意大利国家光学研究所专家合作,成功合成了硒的新型氢化物。该氢化物是一种潜在的高温超导体,对超导电性的研究具有重要意义。这一研究成果日前在线发表在著名国际期刊《物理评论B》上。 近年来,凝聚态物理领域的重要事件是在203K发现了硫氢体系具有超导电性。而硒作为硫同一主族元素,硒氢体系的研究也引起了广泛关注。此前,有研究单位通过第一性原理和密度泛函理论,预测出硒氢体系也存在几种高温超导体。但是这几种材料在自然界中并不存在,因此合成出这几种硒氢材料是研究硒氢体系超导电性的先决条件。 固体物理研究所的研究团队利用金刚石对顶砧高压技术,通过外施压力改变分子间相互作用,并结合激光加热技术诱导压腔内硒和氢发生化学反应,成功合成硒的新型氢化物。研究发现,当压力超过5GPa时,高压腔内的硒—氢气的拉曼光谱呈现出新的硒—氢和氢—氢振动模式,且其震动模式......阅读全文

硒的新型氢化物有望成为高温超导体

  记者4月21日从中科院合肥物质科学研究院获悉,该院固体物理研究所极端环境量子中心研究团队,与意大利国家光学研究所专家合作,成功合成了硒的新型氢化物。该氢化物是一种潜在的高温超导体,对超导电性的研究具有重要意义。这一研究成果日前在线发表在著名国际期刊《物理评论B》上。  近年来,凝聚态物理领域的重

物理所在笼型富氢化物LaH10高温超导电性研究中取得进展

  自1911年超导现象被发现以来,室温超导是人们孜孜以求的目标。然而,基于电-声耦合机制的常规超导体,其超导临界温度(Tc)通常很难超过麦克米兰极限~40K。20世纪80年代发现的铜氧化物高温超导体为实现室温超导带来希望,但是经过30多年的研究,最高Tc(常压下~134K,高压下~164K)很难进

科学界炸了! Nature凌晨发稿室温超导新发现 报告厅被挤爆

物理学界又被扔下一枚核弹!还是因为那石破天惊、看上去分分钟要把诺奖斩获马下的四个字:室温超导。并且这次,来自罗彻斯特大学的Ranga Dias团队,给出的结果压强更低,临界温度更高:新材料在约21℃的室温条件下,加压到1万个标准大气压就会出现超导现象。p.s. 人类已经可以在5-6万个大气压下合成钻

超导“小时代”(29):高温超导新通路

天下同归而殊途,一致而百虑。                                    ——《周易·系辞下》                      【作者注】《超导小时代》系列文章自2015年9月在《物理》杂志连载,欢迎大家订阅、围观。此文发表于《物理》2018年第3期,详见http

氢化物发生法

氢化物发生法的概述:碳、氮、氧族元素的氢化物是共价化合物。其中As、Sb、Bi、Sn、Se、Te、Pb、Ge 8种元素的氢化物具有挥发性,通常情况下为气态,借助载气流可以方便的将其导入原子光谱分析的原子化器或激发光源中,然后进行定量光谱测量,这个过程也是测定这些元素的zui佳样品引入方法。用常规的原

吉林大学在高压下超氢化物的合成研究取得突破性进展

  近日,超硬材料国家重点实验室、物理学院崔田教授课题组在高压下超氢化物的合成研究方向取得突破性进展。研究成果以“Polyhydride CeH9 with an atomic-likehydrogen clathrate structure”为题,2019年8月1日在线发表于Nature子刊Nat

极端压力条件下磷烷的新故事

  自1911年水银首次被发现在低温下会转变为超导体以来,寻找高温超导体一直都是物理和材料科学家们的重要研究目标。1968年,Ashcroft通过理论推测,预言极端压力下的高密度氢很有可能是室温超导体,为超导研究领域立下了“圣杯”。然而,经过逾半个世纪的努力,实验室中至今尚未观测到令人信服的氢金属化

超导器件简介

   超导器件简称 superconductive device ,在电磁频谱的最低端,可用于极高精度的电流比较仪、极低温度的测温技术、地磁与生物磁测量、引力波探测等。在频谱的中段(射频至微波),可用于功率和衰减的精密测量、超导稳频腔、快速瞬态信号波形的精密测量、模拟-数字变换器、逻辑与存储用集成电

高温超导材料作高温超导电缆的介绍

  现有电缆的扩容问题一直困扰着城市电力的发展。传统的城市地下输电电缆存在着通量小、损耗大、对土壤和地下水有热污染及油污染、土建费用高等问题,城市电力扩容变得越来越困难。高温超导电缆具有体积小、造价低、高节能、无污染等优点,具有巨大的经济效益和环保效益,终将替代传统电缆。  高温超导电缆的大规模应用

新方法诱导非超导材料产生超导性 可让超导体性能更强

  美国休斯顿大学官网10月30日发布公告称,该校德克萨斯超导中心科学家发表在《美国科学院院刊》上的最新研究称,他们能诱导非超导材料产生超导性,还可增强超导材料的超导性能,拓展其应用范围。   该中心华裔科学家朱经武和他的团队利用界面组装技术,诱导非超导材料钙铁砷复合物界面表现出超导性,提供了发现高