Antpedia LOGO WIKI资讯

实验室内首次创造出对称性破缺并观察到拓扑瑕疵

据美国每日科学网站8月12日报道,多国研究人员首次通过实验证明,可在实验室内以一种可控的方式制造出对称性破缺并观察到拓扑瑕疵。在一个控制得很好的系统内识别出这些“拓扑瑕疵”,将有助于科学家们研究量子相变、洞悉复杂系统的非平衡性动力系统。研究结果发表在最新出版的《自然·通讯》杂志上。 大约140亿年前,是什么力量创造了我们现在身处的宇宙?在宇宙大爆炸之后的短暂瞬间,对称性破缺如何导致物质、恒星以及星系从一个起初对称且各处环境一样的宇宙中制造出来?这是科学家们一直想知道的问题。尽管宇宙大爆炸仍然无法被重复,但科学家们现在的确能在可控的实验下对这种对称性破缺及其变化进行研究了。 拓扑瑕疵是空间结构内出现的错误,当一个系统内的粒子无法相互“沟通”时,对称性破缺会导致这种拓扑瑕疵。而由德国联邦物理技术研究院(PTB)、乌尔姆大学、美国洛斯阿拉莫斯国家实验室以及以色列耶路撒冷希伯来大学联合进行的实验,就试图对一个复杂的多粒子......阅读全文

中国科学技术大学发表10篇CNS,全球学术排名表现出色

Science:中国科学技术大学在量子力学再取新突破  实现对量子系统的调控是人类认识并利用微观世界规律的必然诉求,也是诸多前沿科学领域的核心要素。自旋作为一种重要的量子调控研究体系,在世界各国的量子计划中均被列为重点研究对象。开展单自旋量子调控研究有助于人们在更深层次上认识量子物理的基础科学问题,

2019年中国学者发表CNS统计,谁是CNS发表之王?

  物理与材料学领域  【1】2019年12月11日,中科院物理所张余洋、丁洪及高鸿钧共同通讯在Science 在线发表题为“Nearly quantized conductance plateau of vortex zero mode in an iron-based superconducto

2019年中国学者86篇Cell,Nature及Science文章汇总

  2019年上半年很快就结束了,iNature盘点了中国学者在Cell,Nature及Science发表的成果,我们发现总共有86篇(截至2019年6月24日),具体介绍如下:  4-6月发表的文章  【1】2019年6月21日,西北工业大学王文,中科院昆明动物研究所/BGI 张国捷及丹麦哥本哈根

过渡金属硫化物中伊辛超导电性研究获系列新进展

  二维层状过渡金属硫化物MX2(M代表Mo,Nb,W;X代表S,Se,Te)中的强自旋-轨道耦合作用与结构的多样性赋予这类材料许多新奇的物理性质,如在少数层1Td相的WTe2中观测到量子自旋霍尔效应,在少数层2H相的MoS2与NbSe2中观测到伊辛超导电性等。这些发现使得MX2材料成为当前凝聚态物

解读2008诺贝尔自然科学奖:解决人类的难题

物理学奖:追问宇宙存在之谜 获奖人:南部阳一郎、小林诚、益川敏英 南部阳一郎、小林诚、益川敏英:量子世界的预言家 出生于日本,今年已经87岁高龄的南部阳一郎是美国理论物理学家,现就职于美国芝加哥大学恩里科·费米学院。他在物理学自发对称破缺机制上作出了开创性的工作,其结果被称为南部-戈德斯通

马丁•伍德爵士中国奖:牛津仪器放飞中国科研梦

【导语】作为一家世界领先的高科技系统设备供应商,牛津仪器将创新视为公司发展的生命线与业务的核心,自1959年以来科技创新一直是牛津仪器公司发展和成功的关键;作为一个奖项的设立者,牛

2016年中国、世界十大科技进展新闻揭晓

   由中国科学院、中国工程院主办,中国科学院学部工作局、中国工程院办公厅、中国科学报社承办,中国科学院院士和中国工程院院士投票评选的2016年中国十大科技进展新闻、世界十大科技进展新闻,2016年12月31日在京揭晓。  入选新闻囊括了一年来最重要的科学发现和技术突破。  入选的2016年中国十大

2016全球最受公众关注的科学成果

  中国科学院科技战略咨询研究院战略情报研究所研制的“2016全球最受公众关注的科学成果”,通过计量统计遴选出天文学与天体物理[1]、物理学、化学、地球科学、生命科学这五个学科中受到科技界热切关注的科学成果,及中国研究者参与的每个学科TOP30受公众关注的科学成果,为科技工作者把握最新的科学研究热点

中国科大等预言存在一种新奇配对超流相

  中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在超冷费米气体中的拓扑相变方面研究取得重要进展:该实验室邹旭波教授与易为教授分别同他们的合作者在理论上预言并刻画了一种同时具有非零配对质心动量及非平庸拓扑性质的新奇配对超流相。两项研究成果分别在线发表于10月28日刊出的同一期《自然·通讯》

美《科学新闻》盘点2012年25大科学故事

  ①希格斯粒子的发现有助于对物质的理解  2012年过去了,但美国《科学新闻》杂志的编辑们并没有忘记那些曾让他们夜不能寐的科学故事。  在这份年度最佳科学新闻榜单上,前两个故事曾让小编们通宵达旦地加过班:2012年7月4日凌晨,他们在网上收看视频直播,那一边在日内瓦,物理学家们正在

国家基金委八大学部公布“优先发展领域及主要研究方向”

  “十三五”期间,通过支持我国优势学科和交叉学科的重要前沿方向,以及从国家重大需求中凝练可望取得重大原始创新的研究方向,进一步提升我国主要学科的国际地位,提高科学技术满足国家重大需求的能力。各科学部遴选优先发展领域及其主要研究方向的原则是:  (1)在重大前沿领域突出学科交叉,注重多学科协同攻关,

欧核中心发现新的物质—反物质不对称现象

  据物理学家组织网4月24日报道,欧洲核子研究中心今天在《物理评论快报》上提交了一份报告称,大型强子对撞机底夸克实验(LHCb)首次在B0s粒子的衰变中观察到物质—反物质的不对称性。这是已知的第四个亚原子粒子表现出了这种行为。   LHCb是LHC上的六个探测器之一,主要目标是测量在b强子中的C

物理学家里曼·戴森去世 曾称“生物学是21世纪的科学”

  「2020年2月28日,英国旅美物理学家、普林斯顿高等研究院教授弗里曼·戴森不幸去世,享年96岁。戴森在物理学造诣深厚,是我国物理学家杨振宁先生的同事和朋友,曾称杨先生为“保守的革命家”。他知识丰富,思考深邃,对物理学之外也多有评论,例如他曾经称“生物学是21世纪的科学”。  《鸟和青蛙》(Bi

中国科大在单自旋量子调控研究中取得进展

  中国科学院院士、中国科学技术大学教授杜江峰领导的中科院微观磁共振重点实验室研究团队建立了在量子系统中实现基于非厄米哈密顿量的量子调控普适理论,并通过对金刚石量子比特的高精度量子操控,首次在单自旋体系中观测到宇称时间对称性破缺。该研究成果以Observation of parity-time sy

霍金大事记 他对人工智能的预言时刻提醒着人类!

据英国天空新闻等多家媒体报道,世界著名物理学家史蒂芬·霍金去世,享年76岁。让我们回顾下霍金的一生:1968年应用先前彭罗斯研究奇点时所发展出来的数学技巧,霍金团队获得很多关于大爆炸的存在与物理行为的重要结果。霍金与乔治·艾利斯于1968年发现,宇宙背景辐射的存在证实宇宙的确曾经发生过大爆炸。霍金与

“最冷”实验室即将发射,量子物理学家拥有太空“游乐场”

量子物理学家即将在太空拥有自己的“游乐场”。据英国《自然》杂志官网8日消息,美国国家航空航天局(NASA)的冷原子实验室(Cold Atom Laboratory)将于5月20日发射升空,进入国际空间站。届时,它将成为已知宇宙中最冷的地方,研究人员将使用它探测在地球上无法观察到的量子现象,在太空制造

“最冷”实验室将发射 量子物理学家将拥有太空“游乐场”

量子物理学家即将在太空拥有自己的“游乐场”。据英国《自然》杂志官网8日消息,美国国家航空航天局(NASA)的冷原子实验室(Cold Atom Laboratory)将于5月20日发射升空,进入国际空间站。届时,它将成为已知宇宙中最冷的地方,研究人员将使用它探测在地球上无法观察到的量子现象,在太空制造

NASA将发射冷原子实验室,造出宇宙最冷之地

NASA冷原子实验室上的设施将使用激光器和其他技术,将原子冷却到绝对零度附近。 图片来源:英国《自然》杂志官网 量子物理学家即将在太空拥有自己的“游乐场”。据英国《自然》杂志官网8日消息,美国国家航空航天局(NASA)的冷原子实验室将于5月20日

在太空新“乐园”玩转量子力学

NASA冷原子实验室上的设施将使用激光器和其他技术,将原子冷却到绝对零度附近。图片来源:英国《自然》杂志官网今日视点量子物理学家即将在太空拥有自己的“游乐场”。据英国《自然》杂志官网8日消息,美国国家航空航天局(NASA)的冷原子实验室将于5月20日发射升空,进入国际空间站。届时,它将成为目前宇宙中

磁性拓扑绝缘体中的量子化反常霍尔效应研究取得进展

图1:量子霍尔效应(左)与量子化反常霍尔效应(右)的比较示意图  最近,中国科学院物理研究所/北京凝聚态物理国家实验室方忠、戴希研究组在无需外磁场的量子霍尔效应研究中取得重要进展。本工作发表在《科学》杂志上【R.Yu,et.al., Science, 3June2010

美国《探索》杂志:未来的科学何去何从

11位顶尖科学家对今后30年科学将引领人类走向何方进行预测  美国科普杂志《探索》为庆祝发行30周年,邀请11位世界顶尖科学家对今后30年科学将引领人类走向何方进行了预测。下面,就让我们看看这些科学大师们到底怎样说。  1.肯·卡尔代拉(Ken Caldeira,卡内基科学研究所的资深科学家,美国国

物理所等实验发现外尔费米子

  1928年,狄拉克提出了描述相对论电子态的狄拉克方程。1929年,德国科学家外尔(Hermann Weyl)指出,当质量为零时,狄拉克方程描述的是一对重叠的具有相反手性的新粒子,即外尔费米子。这种神奇的粒子带有电荷,却不具有质量。但是80多年过去了,人们一直没有能够在实验中观测到外尔费米子。中微

中科院发布2017年中国科学十大进展

  “中国科学十大进展”遴选活动由科技部高技术研究发展中心举办,截至2018年已举办13届。研究进展由《中国基础科学》《科技导报》《中国科学院院刊》《中国科学基金》和《科学通报》五家编辑部推荐,由两院院士、973计划顾问组和咨询组专家、973计划项目首席科学家、国家重点实验室主任等专家学者经过初选和

物理所等在数值模拟中发现相互作用导致的陈绝缘体

  无相互作用拓扑绝缘体的研究已然汗牛充栋,对于描述这些拓扑物质形态的拓扑不变量,如缠绕数、陈数、Z2不变量等,人们在理论和实验上都了解得比较清楚。相比之下,对于相互作用下拓扑物态的性质和分类,则有太多问题悬而未决。电子相互作用所引入的关联效应,一方面使得体系本身变得复杂,另一方面却往往可以产生更加

我国强磁场红外光谱研究铁基超导中狄拉克费米子获进展

  凝聚态物质中的无质量狄拉克(Dirac)费米子是一类能量与动量呈线性关系并且其导带和价带在动量空间某点能量简并的准粒子。由于其对于诸多量子现象的产生起关键性的作用,因此在凝聚态物质中寻找无质量狄拉克费米子是目前凝聚态物理研究最活跃的领域之一。图1 (a)反铁磁态下(温度T ≈ 4.5 K)BaF

物理所首次观测到有能隙的自旋子

  量子自旋液体是凝聚态物理学家追寻已久的新奇物质形态。它由诺贝尔奖得主P. W. Anderson在70年代首次提出,80年代末被用来尝试解释当时刚发现的高温超导现象。传统的物质形态可以用能带理论和对称性自发破缺理论来描述,而自旋液体作为没有对称性破缺的量子物质形态需要用新的理论框架来描述。这个新

2017年中国科学十大进展在京发布

  该项活动旨在加强对我国重大基础研究进展的宣传,激励广大科技工作者的科学热情和奉献精神,促进公众更加理解、关心和支持科学,在全社会营造良好的科学氛围。该项活动已成为我国基础研究传播工作的一个品牌,在科技界产生了良好反响。  1、实现星地千公里级量子纠缠和密钥分发及隐形传态“墨子号”卫星实现千公里级

探索物质世界存在之谜 诺贝尔物理学奖获奖成果解读

  现代物理学理论认为,宇宙大爆炸时应产生同等数量的粒子与反粒子,二者相遇会湮灭,同时释放能量。如果真是如此,整个纷繁复杂的物质世界、包括人类自身都将不会存在。   物质为何会多出反物质?对称性破缺是背后的关键原因。据测算,宇宙中物质粒子的数量只要比反物质粒子多出百亿分之一,就足以形成我们今天的物

物理所可调拓扑能带系统实现分数量子霍尔态研究获进展

  作为量子霍尔效应家族中的一个重要成员,分数量子霍尔效应在近十年来的实验和理论研究中都得到了十分广泛的关注。近年来,随着冷原子光晶格实验技术的飞速发展,如何在格点模型中实现分数量子霍尔态成为了一个重要研究课题。分数量子霍尔效应是一类由粒子间关联引起的、有分数填充数状态的多粒子凝聚效应,是一种有“拓

半导体所等在转角多层石墨烯的呼吸层间耦合研究中获进展

  以石墨烯为代表的二维材料具有优良的电学性能和光学性能,因此被期待可用来发展更薄、导电速度更快的新一代电子元件、晶体管和光电器件。将石墨烯堆叠起来可以得到多层石墨烯。除了具有和体石墨相同的Bernal堆垛(即AB堆垛)方式的多层石墨烯之外,还可以在实验室制备或者合成出不同石墨烯片层取向随机的多层石