Antpedia LOGO WIKI资讯

中科院研究证实摩擦纳米发电可与电磁感应发电比肩

中国科学院北京纳米能源与系统研究所首席科学家王中林院士领导的研究小组近期公布了一项最新研究成果,证实了摩擦纳米发电机与传统电磁感应发电机具有对称性和互补性,首次从理论高度提出了摩擦纳米发电机是继电磁感应发电机之后,采用机械能发电的又一种重要方式,是具有可能和电磁感应发电机同等重要的新能源技术。同时,该小组的研究成果显示,摩擦发电机相对于传统的电磁感应发电机还具有轻便、用材便宜、功率密度高等优势,展示了摩擦发电机作为新能源技术向“大能源”应用迈进的广阔前景。相关研究成果已发表在最新一期的《先进材料》杂志上。 “电磁感应”是中学物理课本上基础知识,俗称磁生电。自1831年迈克尔·法拉第发现电磁感应现象后,电磁感应发电机成为了最重要、最广泛的发电方式,常见的风力、水力、核能等发电方式都基于电磁感应发电机,在很长时期内都尚无其它的发电方式可与其媲美。 而近年来,由王中林院士领导的研究团队一直致力于研发......阅读全文

中科院研究证实摩擦纳米发电可与电磁感应发电比肩

  中国科学院北京纳米能源与系统研究所首席科学家王中林院士领导的研究小组近期公布了一项最新研究成果,证实了摩擦纳米发电机与传统电磁感应发电机具有对称性和互补性,首次从理论高度提出了摩擦纳米发电机是继电磁感应发电机之后,采用机械能发电的又一种重要方式,是具有可能和电磁感应发电机同等

“水能摩擦纳米发电机”海洋发电或成现实

  国家“顶尖千人计划”入选者、中国科学院外籍院士王中林领导的团队研制出水能摩擦纳米发电机,组网利用后或可实现每平方公里海面产生兆瓦级电能。海洋发电产生的能源或将超越水电等“绿色能源”。  据中科院纳米能源与系统研究所介绍,如果将这些水能摩擦纳米发电机结成网状放置到海洋中,将会使海水无规则

超高摩擦电荷密度刷新摩擦纳米发电机性能纪录

  人们一直致力于研究在维持现代社会巨大能源消耗的同时最小化环境消耗。从可再生的自然源(如太阳能、风能和生物质能)收集能量,已经被证实是应对能源危机的可持续可供选择的方向,而且在化石燃料快速消耗的今天扮演着越来越重要的角色。最近发明的摩擦纳米发电机具有质量轻、价格低廉,甚至在低工作频率下仍然高效等先

纳米能源所在摩擦纳米发电机研究中获进展

  海洋是巨大的能源宝库,理论上,海洋完全可以满足地球上所有的能源需求,并且不会对大气造成任何污染,因此海洋能也被誉为“蓝色能源”。与风能或太阳能相比,蓝色能源拥有地理分布上的优势,海洋覆盖了地球75%的表面,全球约44%的人口都居住在距海岸线150千米的范围内。但与风能和太阳能等可再生能源相比,对

摩擦纳米发电机可收集全向水波能

近日,中科院北京纳米能源与系统研究所等机构研究人员开发了一种用于全向水波能收集的摩擦纳米发电机。该设备可以通过共振效应实现对不同频率水波能的有效收集,并在水波测试中获得了良好的实验结果。 5月26日,相关论文刊登于《焦耳》。 该论文通讯作者、中科院北京纳米能源与系统研究所研究员王杰告诉《中国

纳米能源所摩擦纳米发电机回收海水动能研究获进展

  利用海洋能源,是当今世界能源研究的前沿方向。据统计,世界范围内海洋中的波浪能达700亿千瓦,占全部海洋能量的94%,是各种海洋能量的主体。然而,一个多世纪以来,海洋波浪能开发成本高、规模小、经济效益差,而陆地近海周期短、波高小、能流密度低等特征始终束缚着其大规模商业化开发利用和发展。新型、简易、

纳米能源所制出集成一体化摩擦-电磁混合发电机

  电磁感应发电机是目前电力供应的主要发电方式,但是电磁感应发电机在低频的条件下输出功率较低,将机械能转化为电能的效率仍有一定的提升空间。近年来,作为新时代能源的摩擦纳米发电机在收集低频机械能方面取得了令人瞩目的成就。低成本、制备简单的摩擦纳米发电机利用摩擦起电和静电感应效应,能高效地将低频机械能转

纳米能源所研制出三维正交编织摩擦纳米发电织物

  自充电可持续供能的摩擦纳米发电机(TENG)是一类新兴的能量收集器件,依据接触起电和静电感应的耦合作用原理,TENG能够将机械能转化为电能。TENG的低廉、高效、环保的特征和普遍适用性使其在小规模的机械能收集和大规模的能源发电方面都具有广阔的发展前景;更重要的是,TENG在低频和无规则机械能(如

纳米能源所首次利用摩擦效应高效能声音发电

  声波无处不在,如人们所在的各种社交活动场所、机场、建筑工地和交通中都充斥着各种声音。通常情况下,这些声音被认为是污染我们生活环境的噪声,虽然其提供的能量充满我们整个环境,但往往被忽视和浪费掉。若能将这些能量收集并利用,将获得一种崭新的、可持续的能量源。目前,声能采集还不普遍,与其他类型的能量相比

多层集成摩擦纳米发电机的研究取得重要进展

  机械能以其大量存在、获取方便和形式多样等特点作为我们收集利用的优势能源。基于压电、静电和电磁机制的机械能收集技术现已发展成熟并可用于以下应用领域:无线传感系统、环境监测、生物医学和电子设备等。作为我们生活环境中最常见的机械能形式之一,生物机械能由步行等人体运动产生,而这些能量往往被浪费掉了。如果